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Series Editor’s Foreword

The series Advances in Industrial Control aims to report and encourage tech-
nology transfer in control engineering. The rapid development of control tech-
nology has an impact on all areas of the control discipline. New theory, new
controllers, actuators, sensors, new industrial processes, computer methods,
new applications, new philosophies..., new challenges. Much of this develop-
ment work resides in industrial reports, feasibility study papers and the re-
ports of advanced collaborative projects. The series offers an opportunity for
researchers to present an extended exposition of such new work in all aspects
of industrial control for wider and rapid dissemination.
In February, 2006, IEEE Control Systems Magazine celebrated its first 25
years of publication and the special issue was devoted to the topic of PID
control. It was fascinating to read of PID control developments in many of
the departments of the magazine; these included several specialist PID con-
trol articles, a review of PID patents, software and industrial hardware, a
new design software package for PID control and reviews of four substantial
new books on different aspects of the PID control paradigm. The evidence
from this special issue was that PID control continues to play a significant
and important role in industrial control engineering. When seeking reasons
for this industrial popularity, many cite the simplicity of the control law, the
straight forwardness of its tuning procedures and so on but, perhaps a more
fundamental point is that so many industrial control loops are easy to control
and PID control is all that is needed. Then, the simplicity of the PID con-
trol law and the availability of pro-forma tuning procedures have real benefit
particularly as these have been captured by automated tuning procedures in
widely available software packages.
However, the converse of the above argument is also true and much of the sci-
ence of PID control engineering has emerged from trying to understand and
identify the exceptions, where PID control is not adequate for the complex-
ities of the process, and the remedies that can be followed. One example of
this type of new development is that of performance assessment and monitor-
ing. This emerged from trying to find simple ways of determining whether the
many PID control loops in an industrial plant (and often there are hundreds)
had controller tunings that were fit for purpose. Questions like these on the
practical aspects of PID control continue to motivate new developments for
use in industrial practice.
The Advances in Industrial Control series of monographs has always sought



x Series Editor’s Foreword

to be abreast of developments in theory and applications that have an impact
on the field of industrial control. During the late 1990s, there was a veritable
clutch of titles in the series on PID control. C.C. Yu’s monograph Autotuning
of PID Controllers: Relay Feedback Approach was published in 1999 (and has
since been republished as a second edition (ISBN: 1-84628-036-2) in 2006).
The same year saw K.K. Tan and his colleagues develop, summarise and ex-
tend many new and existing concepts in a volume entitled Advances in PID
Control (ISBN: 1-85233-614-5). This presented new methods for a fundamen-
tal understanding of the properties of PID controller tuning parameters. On
a related subject, the series published the 1999 monograph Performance As-
sessment of Control Loops (ISBN: 1-85233-639-0) by B. Huang and S.L. Shah.
This work grew from the seminal work of Professor Thomas Harris who sought
ways of determining just how good an installed PID controller was. As if to
capture this extensive ongoing research activity, PID control had its own con-
ference event under the auspices of IFAC, for in 2000, a Workshop on Digital
Control, PID 2000 was held at Terrassa, Spain.
As the special issue of IEEE Control Systems Magazine shows, the industrial
and academic interest in PID control continues and to continue the devel-
opment of PID control from the millennium, Advances in Industrial Control
welcomes Practical PID Control by Antonio Visioli of the University of Bres-
cia, Italy. It is a very useful and pertinent addition because it focuses on the
broader practical aspects of PID control other than those of how to select or
tune the controller coefficients.
The new volume opens with an introductory chapter on the basics of PID
controllers that establishes the notation, terminology, and structure of the
controllers to be used in the text. Then Dr. Visioli presents chapters on deriva-
tive filter design, anti-windup strategies, the selection of set-point weightings,
the use of feed-forward control, the implications of model identification and
reduction for PID control, performance assessment procedures and, finally,
the oft-neglected ratio control systems. In what is obviously a comprehensive
set of contributions to PID control, Dr. Visioli also has a chapter on Plug
& Control facilities that are often available in industrial SCADA and DCS
software suites. Throughout the text, developments are illustrated with sim-
ulations and experimental results from two hardware process rigs, namely a
level control system (the double tank apparatus from KentRidge Instruments)
and a temperature control rig based on a laboratory-scale oven.
For those interested in the development of PID control, this monograph
presents new perspectives to inspire new theoretical developments and exper-
imental tests. The industrial engineer can use the book to investigate wider
practical PID control problems and the research engineer will be able to ini-
tiate close study of many problems that often prevent PID control systems
form reaching their full performance potential.

M.J. Grimble and M.A. Johnson
Glasgow, Scotland, U.K.



Preface

Although the new and effective theories and design methodologies being
continually developed in the automatic control field, Proportional–Integral–
Derivative (PID) controllers are still by far the most widely adopted con-
trollers in industry owing to the advantageous cost/benefit ratio they are able
to provide. In fact, although they are relatively simple to use, they are able
to provide a satisfactory performance in many process control tasks. Indeed,
their long history and the know-how that has been devised over the years
has consolidated their usage as a standard feedback controller. However, the
availability of high-performance microprocessors and software tools and the
increasing demand of higher product quality at reduced costs still stimulates
researchers to devise new methodologies for the improvement of performance
and/or for an easier use of them. This is proven by the large number of publi-
cations on this topic (especially in recent years) and by the increasing number
of products available on the market.
Actually, much of the effort of researchers has been concentrated on the devel-
opment of new tuning rules for the selection of the values of the PID parame-
ters. Although this is obviously a crucial issue, it is well-known that a key role
in the achievement of high performance in practical conditions is also played
by those functionalities that have to (or can) be added to the basic PID con-
trol law. Thus, in contrast to other books on PID control, this book focuses
on some of these additional functionalities and on other practical problems
that a typical practitioner has to face when implementing a PID controller
(for scalar linear systems). Recent advances as well as more standard method-
ologies are presented in this context. To summarise, the book tries to answer
the following questions:

• How can an effective filter on the PID action be implemented?
• How can an effective anti-windup strategy be implemented?
• How can the set-point weighting strategy be modified to improve perfor-

mance?
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• How can the identification (and model reduction) procedure be selected
for the tuning of the parameters?

• How can an effective feedforward strategy be implemented?
• How can the achieved performance be assessed?
• How can PID-based control structures (ratio control and cascade control)

be implemented effectively?

The aim of the following chapters is therefore to provide a comprehensive
(although surely not exhaustive) review of approaches in the context outlined
above and also aims at stimulating new ideas in the field.
The content of the book is organised as follows.
Chapter 1 provides an introduction to PID controllers, with the aim of making
the book self-contained, of presenting the notation and of describing the prac-
tical issues that will be analysed in the following chapters. In particular, the
three actions are described, the different controller structures are presented
and the tuning issue is discussed.
In Chapter 2 the design of the low-pass filter that is necessary to make the
controller transfer function proper is discussed. It is pointed out that this is
indeed an important issue for the control performance and should be treated
to all intents as a tuning parameter. Methodologies proposed recently in the
literature in this context are described.
Chapter 3 presents and compares the different techniques that can be imple-
mented to counteract the integrator windup effect due to the presence of a
saturating actuator.
Chapter 4 addresses the use of the set-point weighting functionality. In par-
ticular, the standard technique of weighting the set-point for the proportional
action (i.e., of filtering the set-point of the closed-loop system) in order to
reduce the overshoot is first reviewed. Then, the use of a variable set-point
weight is also analysed in detail and it is shown that this might significantly
improve the set-point following performances.
Chapter 5 further focuses on the use of a feedforward action to improve set-
point following performance. In particular, a new design for a (causal) feedfor-
ward action is presented and it is compared to the standard approach. Further,
two methodologies for the design of a noncausal feedforward action, based on
input-output inversion, are explained. The design of feedforward action for
disturbance rejection purposes is also briefly considered.
In Chapter 6 the recently developed Plug&Control strategy is described. It is
shown that it represents a useful tool for the fast tuning of the controller at
the start-up of the process.
Identification and model reduction techniques are analysed in Chapter 7. Dif-
ferent methods based on the open-loop step response or on the relay-feedback
approach for the estimation of the parameters of first-order-plus-dead-time
(FOPDT) or second-order-plus-dead-time (SOPDT) transfer functions are re-
viewed and compared in order to analyse and discuss their suitability of use in
the context of PID control. Further, the use of model reduction techniques to



Preface xiii

be applied for the design of PID control of high-order processes is discussed.
Chapter 8 presents methodologies for the assessment of the (stochastic and
deterministic) performance obtained by a PID controller in the general frame-
work of process monitoring.
Finally, Chapter 9 addresses control structures based on PID controllers. In
particular, standard approaches together with recently proposed methodolo-
gies are presented for cascade control and ratio control.
A large number of simulation and experimental results are shown to anal-
yse better each technique presented. Experimental results are obtained by
means of two laboratory scale setups (described in the appendix), where a
level control task and a temperature control task are implemented. Although
true industrial plant data are not adopted, it is believed that these results are
indeed significant for the evaluation of a methodology in a practical context.
The book is therefore intended to be useful as a comprehensive review for aca-
demic researchers as well as for industrial practitioners who are looking for
new methodologies to improve control systems performance while retaining
their basic know-how and the ease of use and the low cost of the controller.
Readers are assumed to know the fundamentals of linear control systems,
which are typically acquired in a basic course in automatic control at the
university level. In particular, the description of a system through its transfer
function is adopted over the whole book.
This book is a result of almost ten years of research in the field of PID con-
trol. I would like to thank Giovanna Finzi of the University of Brescia for
having encouraged me in pursuing this research topic and for having always
supported me with her friendship. It has been a privilege to work with Aurelio
Piazzi of the University of Parma, I am indeed indebted with him for having
shared his knowledge and experience with me. I am also grateful to Massi-
miliano Veronesi of Yokogawa Italia, Fausto Gorla of Paneutec and Michele
Caselli of ER Sistemi for the useful discussions we had together. A partic-
ular thank is due to Claudio Scali of University of Pisa for having read the
manuscript of the book and for his valuable comments. A special thank is due
also to Leslie Mustoe of Loughborough University for the careful correction of
the manuscript. Many experimental results have been obtained with the help
of many students of the Faculty of Engineering of the University of Brescia.
Their contribution is acknowledged. Many thanks also to Oliver Jackson of
the publishing staff at Springer London, for his help during the preparation
of the manuscript.
Finally, I would like to express my deep gratitude to my beloved wife Silvia
and my dearest daughters Alessandra and Laura for their love, patience and
support.

Dipartimento di Elettronica per l’Automazione Antonio Visioli
University of Brescia
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1

Basics of PID Control

1.1 Introduction

A Proportional–Integral–Derivative (PID) controller is a three-term controller
that has a long history in the automatic control field, starting from the be-
ginning of the last century (Bennett, 2000). Owing to its intuitiveness and its
relative simplicity, in addition to satisfactory performance which it is able to
provide with a wide range of processes, it has become in practice the standard
controller in industrial settings. It has been evolving along with the progress
of the technology and nowadays it is very often implemented in digital form
rather than with pneumatic or electrical components. It can be found in vir-
tually all kinds of control equipments, either as a stand-alone (single-station)
controller or as a functional block in Programmable Logic Controllers (PLCs)
and Distributed Control Systems (DCSs). Actually, the new potentialities
offered by the development of the digital technology and of the software pack-
ages has led to a significant growth of the research in the PID control field:
new effective tools have been devised for the improvement of the analysis and
design methods of the basic algorithm as well as for the improvement of the
additional functionalities that are implemented with the basic algorithm in
order to increase its performance and its ease of use.
The success of the PID controllers is also enhanced by the fact that they often
represent the fundamental component for more sophisticated control schemes
that can be implemented when the basic control law is not sufficient to obtain
the required performance or a more complicated control task is of concern.
In this chapter, the fundamental concepts of PID control are introduced with
the aim of presenting the rationale of the control law and of describing the
framework of the methodologies presented in the subsequent chapters. In par-
ticular, the meaning of the three actions is explained and the tuning issue is
briefly discussed. The different forms for the implementation of a PID control
law are also addressed.
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1.2 Feedback Control

The aim of a control system is to obtain a desired response for a given sys-
tem. This can be done with an open-loop control system, where the controller
determines the input signal to the process on the basis of the reference signal
only, or with a closed-loop control system, where the controller determines
the input signal to the process by using also the measurement of the output
(i.e., the feedback signal).
Feedback control is actually essential to keep the process variable close to the
desired value in spite of disturbances and variations of the process dynamics,
and the development of feedback control methodologies has had a tremen-
dous impact in many different fields of the engineering. Besides, nowadays
the availability of control system components at a lower cost has favoured the
increase of the applications of the feedback principle (for example in consumer
electronics products).
The typical feedback control system is represented in Figure 1.1. Obviously,
the overall control system performance depends on the proper choice of each
component. From the purposes of controller design, the actuator and sensor
dynamics are often neglected (although the saturation limits of the actuator
have to be taken into account) and the block diagram of Figure 1.2 is consid-
ered, where P is the process, C is the controller, F is a feedforward filter, r is
the reference signal, e = r − y is the control error, u is the manipulated (con-
trol) variable, y is the process (controlled) variable, d is a load disturbance
signal and n is a measurement noise signal.

Controller Actuator Process

Sensor

Fig. 1.1. Typical components of a feedback control loop

C Pu y

n

e
d

r F

Fig. 1.2. Schematic block diagram of a feedback control loop



1.4 The Three Actions of PID Control 3

1.3 On–Off Control

One of the most adopted (and one of the simplest) controllers is undoubtedly
the On–Off controller, where the control variable can assume just two values,
umax and umin, depending on the control error sign. Formally, the control law
is defined as follows:

u =
{

umax if e > 0
umin if e < 0 , (1.1)

i.e., the control variable is set to its maximum value when the control error is
positive and to its minimum value when the control error is negative. Gener-
ally, umin = 0 (Off) is selected and the controller is usually implemented by
means of a relay.
The main disadvantage of the On–Off controller is that a persistent oscillation
of the process variable (around the set-point value) occurs. Consider for exam-
ple the process described by the first-order-plus-dead-time (FOPDT) transfer
function

P (s) =
1

10s + 1
e−2s

controlled by an On–Off controller with umax = 2 and umin = 0. The result
of applying a unit step to the set-point signal is shown in Figure 1.3, where
both the process variable and the control variable have been plotted.
Actually, in practical cases, the On–Off controller characteristic is modified
by inserting a dead zone (this results in a three-state controller ) or hysteresis
in order to cope with measurement noise and to limit the wear and tear of the
actuating device. The typical controller functions are shown in Figure 1.4.
Because of its remarkable simplicity (there are no parameters to adjust), the
On–Off controller is indeed suitable for adoption when no tight performance
is required, since it is very cost-effective in these cases. For this reason it is
generally available in commercial industrial controllers.

1.4 The Three Actions of PID Control

Applying a PID control law consists of applying properly the sum of three
types of control actions: a proportional action, an integral action and a deriva-
tive one. These actions are described singularly hereafter.

1.4.1 Proportional Action

The proportional control action is proportional to the current control error,
according to the expression

u(t) = Kpe(t) = Kp(r(t) − y(t)), (1.2)

where Kp is the proportional gain. Its meaning is straightforward, since it
implements the typical operation of increasing the control variable when the
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Fig. 1.3. Example of an On–Off control application. Solid line: process variable;
dashed line: control variable.
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Fig. 1.4. Typical On–Off controller characteristics. a) ideal; b) modified with a
dead zone; c) modified with hysteresis.

control error is large (with appropriate sign). The transfer function of a pro-
portional controller can be derived trivially as

C(s) = Kp. (1.3)

With respect to the On–Off controller, a proportional controller has the ad-
vantage of providing a small control variable when the control error is small
and therefore to avoid excessive control efforts. The main drawback of using a
pure proportional controller is that it produces a steady-state error. It is worth
noting that this occurs even if the process presents an integrating dynamics
(i.e., its transfer function has a pole at the origin of the complex plane), in
case a constant load disturbance occurs. This motivates the addition of a bias
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(or reset) term ub, namely,

u(t) = Kpe(t) + ub. (1.4)

The value of ub can be fixed at a constant level (usually at (umax + umin)/2)
or can be adjusted manually until the steady-state error is reduced to zero.
It is worth noting that in commercial products the proportional gain is often
replaced by the proportional band PB , that is the range of error that causes
a full range change of the control variable, i.e.,

PB =
100
Kp

. (1.5)

1.4.2 Integral Action

The integral action is proportional to the integral of the control error, i.e., it
is

u(t) = Ki

∫ t

0

e(τ)dτ, (1.6)

where Ki is the integral gain. It appears that the integral action is related to
the past values of the control error. The corresponding transfer function is:

C(s) =
Ki

s
. (1.7)

The presence of a pole at the origin of the complex plane allows the reduction
to zero of the steady-state error when a step reference signal is applied or a
step load disturbance occurs. In other words, the integral action is able to set
automatically the correct value of ub in (1.4) so that the steady-state error is
zero. This fact is better explained in Figure 1.5, where the resulting transfer
function is

C(s) = Kp

(
1 +

1
Tis

)
, (1.8)

i.e., a PI controller results. For this reason the integral action is also often
called automatic reset.
Thus, the use of a proportional action in conjunction to an integral action,
i.e., of a PI controller, solves the main problems of the oscillatory response
associated to an On–Off controller and of the steady-state error associated to
a pure proportional controller.
It has to be stressed that when integral action is present, the so-called inte-
grator windup phenomenon might occur in the presence of saturation of the
control variable. This aspect will be thoroughly analysed in Chapter 3.



6 1 Basics of PID Control

ue Kp

1
i s+1T

Fig. 1.5. PI controller in automatic reset configuration

1.4.3 Derivative Action

While the proportional action is based on the current value of the control
error and the integral action is based on the past values of the control error,
the derivative action is based on the predicted future values of the control
error. An ideal derivative control law can be expressed as:

u(t) = Kd

de(t)
dt

, (1.9)

where Kd is the derivative gain. The corresponding controller transfer function
is

C(s) = Kds. (1.10)

In order to understand better the meaning of the derivative action, it is worth
considering the first two terms of the Taylor series expansion of the control
error at time Td ahead:

e(t + Td) � e(t) + Td

de(t)
dt

. (1.11)

If a control law proportional to this expression is considered, i.e.,

u(t) = Kp

(
e(t) + Td

de(t)
dt

)
, (1.12)

this naturally results in a PD controller. The control variable at time t is
therefore based on the predicted value of the control error at time t + Td.
For this reason the derivative action is also called anticipatory control, or rate
action, or pre-act.
It appears that the derivative action has a great potentiality in improving the
control performance as it can anticipate an incorrect trend of the control error
and counteract for it. However, it has also some critical issues that makes it
not very frequently adopted in practical cases. They will be discussed in the
following sections.
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1.5 Structures of PID Controllers

The combination of the proportional, integral, and derivative actions can be
done in different ways. In the so-called ideal or non-interacting form, the PID
controller is described by the following transfer function:

Ci(s) = Kp

(
1 +

1
Tis

+ Tds

)
, (1.13)

where Kp is the proportional gain, Ti is the integral time constant, and Td

is the derivative time constant. An alternative representation is the series or
interacting form:

Cs(s) = K ′
p

(
1 +

1
T ′

is

)
(T ′

ds + 1) = K ′
p

(
T ′

is + 1
T ′

is

)
(T ′

ds + 1) , (1.14)

where the fact that a modification of the value of the derivative time constant
T ′

d affects also the integral action justifies the nomenclature adopted.
It has to be noted that a PID controller in series form can be always repre-
sented in ideal form by applying the following formulae:

Kp = K ′
p

T ′
i + T ′

d

T ′
i

Ti = T ′
i + T ′

d

Td =
T ′

iT
′
d

T ′
i + T ′

d

(1.15)

Conversely, it is not always possible to convert a PID controller in series form
into a PID controller in ideal form. This can be done only if

Ti ≥ 4Td (1.16)

through the following formulae:

K ′
p =

Kp

2

⎛
⎝1 +

√
1 − 4

Td

Ti

⎞
⎠

T ′
i =

Ti

2

⎛
⎝1 +

√
1 − 4

Td

Ti

⎞
⎠

T ′
d =

Ti

2

⎛
⎝1 −

√
1 − 4

Td

Ti

⎞
⎠

(1.17)
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It is worth noting that a PID controller has two zeros, a pole at the origin and
a gain (the fact that the transfer function is not proper will be discussed in
Section 1.6). When Ti = 4Td the resulting zeros of Ci(s) are coincident, while
when Ti < 4Td they are complex conjugates. Thus, the ideal form is more
general than the series form since it allows the implementation of complex
conjugate zeros.
The reason for preferring the series form to the ideal form is that the series
form was the first to be implemented in the last century with pneumatic
technology. Then, many manufacturers chose to retain the know-how and to
avoid changing the form of the PID controller. Further, it is sometimes claimed
that a PID controller in series form is more easy to tune.
Another way to implement a PID controller is in parallel form 1, i.e.,

Cp(s) = Kp +
Ki

s
+ Kds. (1.18)

In this case the three actions are completely separated. Actually, the parallel
form is the most general of the different forms, as it allows to exactly switch
off the integral action by fixing Ki = 0 (in the other cases the value of the
integral time constant should tend to infinity). The conversion between the
parameters of the parallel PID controller and those of the ideal one can be
done trivially by means of the following formulae:

Ki =
Kp

Ti

Kd = KpTd

(1.19)

1.6 Modifications of the Basic PID Control Law

The expressions (1.13), (1.14) and (1.18) of a PID controller given in the
previous section are actually not adopted in practical cases because of a few
problems that can be solved with suitable modifications of the basic control
law. These are analysed in this section.

1.6.1 Problems with Derivative Action

From Expressions (1.13), (1.14) and (1.18) it appears that the controller trans-
fer function is not proper and therefore it can not be implemented in practice.

1 Actually, the term parallel PID controller is often adopted also for expression
(1.13) (see for example (Tan et al., 1999; Seborg et al., 2004)). However, here
it is preferred to use the nomenclature of (Åström and Hägglund, 1995; Ang
et al., 2005) for the sake of clarity and in order to distinguish better the three
considered forms.
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This problem is evidently caused by the derivative action. Indeed, the high-
frequency gain of the pure derivative action is responsible for the amplification
of the measurement noise in the manipulated variable. Consider for example
a sinusoidal signal

n(t) = A sin(ωt)

which represents measurement noise in the control scheme of Figure 1.2. If
the derivative action only is considered, the control variable term due to this
measurement noise is

u(t) = AKdω cos(ωt).

It can be easily seen that the amplification effect is more evident when the
frequency of the noise is high. In practical cases, a (very) noisy control variable
signal might cause a damage of the actuator. The problems outlined above can
be solved by filtering the derivative action with (at least) a first-order low-pass
filter. The filter time constant should be selected in order to filter suitably the
noise and to avoid to influence significantly the dominant dynamics of the
PID controller.
In this context, the PID control laws (1.13), (1.14) and (1.18) are usually
modified as follows. The ideal form becomes:

Ci1a(s) = Kp

⎛
⎜⎜⎝1 +

1
Tis

+
Tds

Td

N
s + 1

⎞
⎟⎟⎠ , (1.20)

or, alternatively (Gerry and Shinskey, 2005),

Ci1b(s) = Kp

⎛
⎜⎜⎜⎜⎜⎝1 +

1
Tis

+
Tds

1 +
Td

N
s + 0.5

(
Td

N
s

)2

⎞
⎟⎟⎟⎟⎟⎠ . (1.21)

The series form becomes:

Cs(s) = K ′
p

(
1 +

1
T ′

is

)⎛
⎜⎜⎝ T ′

ds + 1
T ′

d

N ′s + 1

⎞
⎟⎟⎠ = K ′

p

(
T ′

is + 1
T ′

is

)⎛
⎜⎜⎝ T ′

ds + 1
T ′

d

N ′s + 1

⎞
⎟⎟⎠ , (1.22)

where N generally assumes a value between 1 and 33, although in the majority
of the practical cases its setting falls between 8 and 16 (Ang et al., 2005). The
expression of the parallel form can be straightforwardly derived as well. It is
worth noting that an alternative expression for the ideal form is to filter the
overall control variable, i.e., to use the following controller:
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Ci2a(s) = Kp

(
1 +

1
Tis

+ Tds

)
1

Tfs + 1
, (1.23)

or, alternatively (Åström and Hägglund, 2004),

Ci2b(s) = Kp

(
1 +

1
Tis

+ Tds

)
1

(Tfs + 1)2
. (1.24)

The block diagrams of the most adopted controllers are shown in Figures
1.6–1.8. Note that if the PI part of a series controller is in the automatic
reset configuration, then the corresponding series PID controller is reported
in Figure 1.9.
While these modifications are those that can be usually found in the literature
(see for example (Luyben, 2001a)), it has to be stressed that the filter to be
adopted is a critical issue and therefore this design aspect will be thoroughly
analysed in Chapter 2.
Another issue related to the derivative action that has to be considered is
the so-called derivative kick. In fact, when an abrupt (stepwise) change of the
set-point signal occurs, the derivative action is very large and this results in
a spike in the control variable signal, which is undesirable. A simple solution
to avoid this problem is to apply the derivative term to the process output
only instead of the control error. In this case the ideal (not filtered) derivative
action becomes:

u(t) = −Kd

dy(t)
dt

. (1.25)

It is worth noting that when the set-point signal is constant, applying the
derivative term to the control error or to the process variable is equivalent.
Thus, the load disturbance rejection performance is the same in the two cases.

Kp

Td s

u
si

sdT

T
1

N +1

e

Fig. 1.6. Block diagram of a PID controller in ideal form
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1
sTi

pK
1

Tf s+1
ue

Td s

Fig. 1.7. Alternative block diagram of a PID controller in ideal form

e
Kp

Td s+1N iT
1

u

s
Td s

Fig. 1.8. Block diagram of a PID controller in series form

ue
Kp

1
TiTd s+1N s+1

Td s

Fig. 1.9. Block diagram of a PID controller in series form with the PI part in
automatic reset configuration

1.6.2 Set-point Weighting

A typical problem with the design of a feedback controller is to achieve at the
same time a high performance both in the set-point following and in the load
disturbance rejection performance. Roughly speaking, a fast load disturbance
rejection is achieved with a high-gain controller, which gives an oscillatory
set-point step response on the other side. This problem can be approached by
designing a two-degree-of-freedom control architecture, namely, a combined
feedforward/feedback control law.
In the context of PID control this can be achieved by weighting the set-point
signal for the proportional action, that is, to define the proportional action as
follows:

u(t) = Kp(βr(t) − y(t)), (1.26)

where the value of β is between 0 and 1.
In this way, the control scheme represented in Figure 1.10 is actually imple-
mented, where
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C(s) = Kp

(
1 +

1
Tis

+ Tds

)
(1.27)

and

Csp(s) = Kp

(
β +

1
Tis

+ Tds

)
(1.28)

(the filter of the derivative action has not been considered for the sake of sim-
plicity). It appears that the load disturbance rejection task is decoupled from
the set-point following one and obviously it does not depend on the weight β.
Thus, the PID parameters can be selected to achieve a high load disturbance
rejection performance and then the set-point following performance can be
recovered by suitably selecting the value of the parameter β. An equivalent
control scheme is shown in Figure 1.11, where

F (s) =
1 + βTis + TiTds

2

1 + Tis + TiTds2
. (1.29)

Here it is more apparent that the function of the set-point weight is to smooth
the (step) set-point signal in order to damp the response to a set-point change.
Note also that if β = 0 the proportional kick is avoided. Indeed, many indus-
trial controllers implement this solution (Åström and Hägglund, 1995, page
110).
The use of the set-point weighting and of other feedforward control strategies
for the improvement of performances will be analysed thoroughly in Chapters
4 and 5.
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Fig. 1.10. Two-degree-of-freedom PID control scheme
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Fig. 1.11. Equivalent two-degree-of-freedom PID control scheme
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1.6.3 General ISA–PID Control Law

If all the modifications of the basic control law previously addressed are con-
sidered, the following general PID control law can be derived:

u(t) = Kp

(
βr(t) − y(t) +

1
Ti

∫ t

0
e(τ)dτ + Td

(
d(γr(t) − yf (t))

dt

))

Td

N

dyf (t)
dt

= y(t) − yf (t)

(1.30)

where, in general, it is 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1, although the value of
γ is usually either 0 (the derivative action is entirely applied to the process
output) or 1 (the derivative action is entirely applied to the control error), as
explained in Section 1.6.1.
The previous one is usually called a PID controller in ISA form or, alterna-
tively, a beta-gamma controller. Often, if β = 1 and γ = 0 the controller is
indicated as PI–D, while if β = 0 and γ = 0 it is indicated as I–PD. The block
diagram corresponding to an ISA–PID controller is the same as in Figure 1.11,
where in this case

C(s) = Ci1a(s) = Kp

⎛
⎜⎜⎝1 +

1
Tis

+
Tds

Td

N
s + 1

⎞
⎟⎟⎠ (1.31)

and

F (s) =

1 +

(
βTi +

Td

N

)
s + TiTd

(
γ +

β

N

)
s2

1 +

(
Ti +

Td

N

)
s + TiTd

(
1 +

1
N

)
s2

. (1.32)

1.7 Digital Implementation

If a digital implementation of the PID controller is adopted, then the previ-
ously considered control laws have to be discretised. This can be done with
any of the available discretisation method (Åström and Wittenmark, 1997).
For the sake of clarity and for future reference (see Chapter 8), an example is
shown hereafter. Consider the continuous time expression of a PID controller
in ideal form:

u(t) = Kp

(
e(t) +

1
Ti

∫ t

0

e(τ)dτ + Td

de(t)
dt

)
, (1.33)

and define a sampling time ∆t. The integral term in (1.33) can be approxi-
mated by using backward finite differences as
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∫ tk

0

e(τ)dτ =
k∑

i=1

e(ti)∆t, (1.34)

where e(ti) is the error of the continuous time system at the ith sampling
instant. By applying the backward finite differences also to the derivative
term it results:

de(tk)
dt

=
e(tk) − e(tk−1)

∆t
. (1.35)

Then, the discrete time control law becomes:

u(tk) = Kp

(
e(tk) +

∆t

Ti

k∑
i=1

e(ti) +
Td

∆t
(e(tk) − e(tk−1))

)
. (1.36)

In this way, the value of the control variable is determined directly. Alterna-
tively, the control variable at time instant tk can be calculated based on its
value at the previous time instant u(tk−1). By subtracting the expression of
u(tk−1) from that of u(tk), we obtain:

u(tk) = u(tk−1)+

Kp

[(
1 +

∆t

Ti
+

Td

∆t

)
e(tk) +

(
−1 − 2Td

∆t

)
e(tk−1) +

Td

∆t
e(tk−2)

]
.

(1.37)
For an obvious reason, the control algorithm (1.37) is called incremental algo-
rithm or velocity algorithm, while that expressed in (1.36) is called positional
algorithm.
Expression (1.37) can be rewritten more compactly as:

u(tk) − u(tk−1) = K1e(tk) + K2e(tk−1) + K3e(tk−2), (1.38)

where

K1 = Kp

(
1 +

∆t

Ti
+

Td

∆t

)
,

K2 = −Kp

(
1 +

2Td

∆t

)
,

K3 = Kp

Td

∆t
.

(1.39)

By defining q−1 as the backward shift operator, i.e.,

q−1u(tk) = u(tk−1), (1.40)

the discretised PID controller in velocity form can be expressed as
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C(q−1) =
K1 + K2q

−1 + K3q
−2

1 − q−1
, (1.41)

where K1, K2 and K3 can be viewed as the tuning parameters.

1.8 Choice of the Controller Type

For a given control task, it is obviously not necessary to adopt all the three
actions. Thus, the choice of the controller type is an integral part of the over-
all controller design, taking into account that the final aim is to obtain the
best cost/benefit ratio and therefore the simplest controller capable to obtain
a satisfactory performance should be preferred.
In this context it is worth analysing briefly some guidelines on how the con-
troller type (P, PI, PD, PID) has to be selected. As already mentioned, a P
controller has the disadvantage, in general, of giving a non zero steady-state
error. However, in control tasks where this is not of concern, such as for exam-
ple in surge tank level control or in inner (secondary) loops of cascade control
architectures, where the zero steady-state error is ensured by the integral ac-
tion adopted in the outer (primary) controller (see Chapter 9), a P controller
can be the best choice, as it is simple to design (indeed, if the process has a
low-order dynamics the proportional gain can be set to a high value in order
to provide a fast response and a low steady-state error). Further, if an integral
component is present in the system to be controlled (such as in mechanical
servosystems or in surge vessels where the manipulated variable is the differ-
ence between inflow and outflow) and no load disturbances are likely to occur,
then there is no need of an integral action in the controller to provide a zero
steady-state control error. In this case the control performance can be usually
improved by adding a derivative action, i.e., by adopting a PD controller. In
fact, the derivative action provides a phase lead that allows to increase the
bandwidth of the system and therefore to speed up the response to a set-point
change.
If the zero steady-state error is an essential control requirement, then the sim-
plest choice is to use a PI controller. Actually, a PI controller is capable to
provide an acceptable performance for the vast majority of the process con-
trol tasks (especially if the dominant process dynamics is of first order) and
it is indeed the most adopted controller in the industrial context. This is also
due to the problems associated with the derivative actions, namely the need
of properly filtering the measurement noise and the difficulty in selecting an
appropriate value of the derivative time constant.
In any case, the use of the derivative action, that is, of a PID controller, pro-
vides very often the potentiality of significantly improve the performance.
For example, if the process has a second-order dominant dynamics, the
zero introduced in the controller by the derivative action can be adopted
to cancel the fastest pole of the process transfer function (see, for example,
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(Skogestad, 2003)). However, it is also often claimed that if the process has a
significant (apparent) dead time, then the derivative action should be discon-
nected. Actually, the usefulness of the derivative action has been the subject
of some investigation (Åström and Hägglund, 2000b). Recent contributions to
the literature have shown that the performance improvement given by the use
of the derivative action decreases as the ratio between the apparent dead time
and the effective time constant increases but it can be very beneficial if this
ratio is not too high (about two) (Åström and Hägglund, 2004; Kristiansson
and Lennartson, 2006).
Finally, it is worth noting that for processes affected by a large dead time
(with respect to the dominant time constant) the use of a dead-time compen-
sator controller, such as a Smith predictor based scheme (Palmor, 1996) or
the so-called PID-deadtime controller (where the time-delay compensation is
added to the integral feedback loop of the PID controller in automatic reset
configuration) (Shinskey, 1994), can be essential in obtaining a satisfactory
control performance (Ingimundarson and Hägglund, 2002).

1.9 The Tuning Issue

The selection of the PID parameters, i.e., the tuning of the PID controllers,
is obviously the crucial issue in the overall controller design. This operation
should be performed in accordance to the control specifications. Usually, as
already mentioned, they are related either to the set-point following or to the
load disturbance rejection task, but in some cases both of them are of primary
importance. The control effort is also generally of main concern as it is related
to the final cost of the product and to the wear and life-span of the actuator.
It should be therefore kept at a minimum level. Further the robustness issue
has to be taken into account.
A major advantage of the PID controller is that its parameters have a clear
physical meaning. Indeed, increasing the proportional gain leads to an increas-
ing of the bandwidth of the system and therefore a faster but more oscillatory
response should be expected. Conversely, increasing the integral time constant
(i.e., decreasing the effect of the integral action) leads to a slower response
but to a more stable system. Finally, increasing the derivative time constant
gives a damping effect, although much care should be taken in avoiding to
increase it too much as an opposite effect occurs in this case and an unstable
system could eventually result.
The problem associated with tuning of the derivative action can be better
understood with the following analysis (Ang et al., 2005). Suppose that the
process to be controlled is described by a general FOPDT transfer function

P (s) =
K

Ts + 1
e−Ls. (1.42)

Suppose also that an ideal PD controller is adopted, i.e.,
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C(s) = Kp (1 + Tds) . (1.43)

The gain of the open-loop transfer function is determined as

|C(jω)P (jω)| = KKp

√
1 + T 2

d ω2

1 + T 2ω2
≥ KKp min

(
1,

Td

T

)
, (1.44)

where the inequality is justified by the fact that
√

(1 + T 2
d ω2)/(1 + T 2ω2) is

monotonic with ω. It can be easily determined that if Td ≤ T and KKp ≥ 1 or
if Td ≥ T and Td ≥ T/(KKp), then the crossover frequency ωc is at infinity,
i.e., the magnitude of the open-loop transfer function is not less than 0 dB.
As a consequence, since the phase decreases when the frequency increases be-
cause of the time delay, the closed-loop system will be unstable.
To illustrate this fact, consider an example where the process (1.42) with
K = 2, T = 1 and L = 0.2 is controlled by a PID controller in series form
(1.14) with Kp = 1 and Ti = 1. Then, if it is selected Td = 0.01 the gain
margin results to be 12.3 dB and the phase margin results to be 68.2 deg.
Increasing the derivative time constant to Td = 0.05 yields an increase of the
gain margin and of the phase margin to 13.2 dB and 72.7 deg, respectively.
Thus, in this case, increasing the derivative action implies that a more slug-
gish response and a more robust system is obtained. However, if the derivative
time constant is raised to 0.5 the system stability is lost.
The aforementioned concepts allow the operator to manually tune the con-
troller in a relatively easy way, although the trial-and-error operation can be
very time consuming and the final result can be far from the optimum and
heavily depends on the operator’s skill.
In order to help the operator in tuning the controller correctly and with a
small effort, starting with the well-known Ziegler–Nichols formulae (Ziegler
and Nichols, 1942), a large number of tuning rules have been devised in the
last sixty years (Åström and Hägglund, 1995; O’Dwyer, 2006). They try to ad-
dress the possible different control requirements and they are generally based
on a simple model of the plant. They have been derived empirically or analyt-
ically. The operator has therefore to obtain a suitable model of the plant and
to select the most convenient tuning rule with respect to the given control
requirements. It has to be noted that the obtained PID parameters (that is,
the selected tuning rule) have to be appropriate for the adopted controller
structure (ideal, series, etc.), otherwise they have to be converted (see Ex-
pressions (1.15), (1.17) and (1.19)).
Finally, it is worth highlighting that many software packages have been devel-
oped and are available on the market which assist practitioners in designing
the overall controller, namely, to identify an accurate process model based on
available data, to tune the controller according to the given requirements, to
perform a what-if analysis and so on. A review of them can be found in (Ang
et al., 2005).
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1.10 Automatic Tuning

The functionality of automatically identifying the process model and tuning
the controller based on that model is called automatic tuning (or, simply,
auto-tuning). In particular, an identification experiment is performed after
an explicit request of the operator and the values of the PID parameters are
updated at the end of it (for this reason the overall procedure is also called
one-shot automatic tuning or tuning-on-demand). The design of an automatic
tuning procedure involves many critical issues, such as the choice of the identi-
fication procedure (usually based on an open-loop step response or on a relay
feedback experiment (Yu, 1999)), of the a priori selected (parametric or non
parametric) process model and of the tuning rule. An excellent presentation
of this topic can be found in (Leva et al., 2001).
The one-shot automatic tuning functionality is available in practically all the
single-station controllers available on the market. Advanced (more expensive)
control units might provide a self-tuning functionality, where the identification
procedure is continuously performed during routine process operation in or-
der to track possible changes of the system dynamics and the PID parameters
values are modified adaptively. In this case all the issues related to adaptive
control have to be taken into account (Åström and Wittenmark, 1995).

1.11 Conclusions and References

In this chapter the fundamental concepts of PID controllers have been in-
troduced. The main practical problems connected with their use have been
outlined and the most adopted controller structures have been presented. In
the following chapters different aspects that have been considered will be fur-
ther developed.
Basic concepts of PID controllers can be found in almost every book of process
control (see for example (Shinskey, 1994; Ogunnaike and Ray, 1994; Luyben
and Luyben, 1997; Marlin, 2000; Corripio, 2001; Bequette, 2003; Seborg et
al., 2004; Corriou, 2004; Ellis, 2004; Altmann, 2005)). For a detailed treat-
ment, see (Åström and Hägglund, 1995) and (Åström and Hägglund, 2006)
where all the methodological as well as technological aspects are covered. An
excellent collection of tuning rules can be found in (O’Dwyer, 2006). Recent
advances are presented in (Tan et al., 1999).
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Derivative Filter Design

2.1 Introduction

It is a matter of fact that the derivative action is seldom adopted in practical
cases (actually, 80% of the employed PID controllers have the derivative part
switched-off (Ang et al., 2005)), although it has been shown that it is pos-
sible to provide a significant improvement of the control performance (note
that this improvement becomes less important as the ratio between the ap-
parent time delay and the effective time constant increases (Kristiansson and
Lennartson, 2006; Åström and Hägglund, 2004)). This is due to a number of
reasons, one of them being certainly that it is the most difficult to tune, as
explained in Section 1.9. Indeed, the stability regions for PID controllers are
more complex than those for PI controllers and therefore the tuning of a PID
controller is more difficult (Åström and Hägglund, 2000b). Also, the inherent
amplification of the measurement noise represents a significant technological
problem, because, if not properly filtered, it might cause a damage to the
actuator.
In this chapter it is shown that part of the problem is due also to the structure
of the PID controller (see (1.20)–(1.24)), in particular if a PID controller in
ideal form with a fixed derivative filter parameter N is adopted.

2.2 The Significance of the Filter in PID Design

It is interesting to evaluate how the presence of a filter of the derivative action
changes the location of the zeros in the PID controller. It is trivial to derive
that if the PID controller is in series form (1.22) or in ideal form (1.23)–(1.24)
with the filter applied to the control variable, then the addition of the filter
does not alter the position of the zeros of the controller. Hence, the interesting
case to analyse is that related to the PID controller in ideal form (1.20) (or
(1.31)).
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If the derivative filter is not applied, the zeros of the PID controller (1.13) are
the solution of the equation

TiTds
2 + Tis + 1 = 0. (2.1)

They can be easily derived as:

z1,2 =
1
2
− Ti ±

√
T 2

i − 4TiTd

TiTd
. (2.2)

If the derivative filter is applied, the zeros of the controller are the solution of
the equation

TiTd

(
1 +

1
N

)
s2 +

(
Ti +

Td

N

)
s + 1 = 0. (2.3)

It results:

z̄1,2 =
1
2
− TiN − Td ± √

(TiN − Td)2 − 4T iTdN2

TiTd(1 + N)
. (2.4)

A sensitivity analysis can be performed in order to evaluate the influence
of the parameter N , i.e., of the filter, on the location of zeros (Leva and
Colombo, 2001). The relative perturbation of the ith zero can be calculated
as:

er,i :=
|z̄i − zi|
|zi| . (2.5)

To evaluate it quantitatively with an example, Ti is fixed to be 100 and the
value of er,i has been determined by varying Td from 1 to 100, i.e., by varying
the ratio Td/Ti from 0.01 to 1. Results related to the case N = 5 and N = 20
are shown in Figures 2.1 and 2.2. It can be seen that the relative error can be
greater than 30% and a high value appears when Ti = 4Td (i.e., when the two
zeros are real and coincident), which is a very relevant case, as this relation
is adopted in many tuning rules such as the Ziegler–Nichols one .
This analysis is coherent with the results presented in (Kristiansson and
Lennartson, 2006), where the performance achieved by a PI(D) controller is
evaluated by considering both its capability in the load disturbance rejection
task and the corresponding control activity. It is shown that, in general, the
proper use of the derivative action allows to significantly increase the load dis-
turbance rejection performance with a modest increase of the control effort.
However, if Ti is fixed to be 4Td and N to be 10, then a (slight) increase of
the load disturbance rejection performance can be made only at the expense
of a much increased control effort (with respect to an optimal PI controller).
All these results confirm that the presence of the derivative filter in a PID
controller in ideal form cannot be neglected in general in the controller de-
sign phase (Leva and Colombo, 2001). Other practical issues concerning the
presence of the derivative filter are addressed in the following sections.
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Fig. 2.1. Relative error of the controller zero z1 due to the presence of the derivative
filter in an ideal form PID controller
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Fig. 2.2. Relative error of the controller zero z2 due to the presence of the derivative
filter in an ideal form PID controller
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2.3 Ideal vs. Series Form

From another point of view with respect to the approach made in Section
2.2, the PID controllers in the ideal and or in the series form are compared,
according to the analysis and the examples presented in (Isaksson and Graebe,
2002).
In particular, the role of the controller structure in the classical lead-lag design
or in the pole-placement design is outlined by means of the following examples.
Suppose that the control of a tank level with a first-order actuator has to be
performed. The process is described by the following transfer function

P (s) =
Y (s)
U(s)

=
K

s(τs + 1)
, K = 0.1, τ = 2, (2.6)

where the input u(t) is the valve position set-point and the output y(t) is
the tank level. A classical controller design leads to the following controller
transfer function, in the context of the typical unitary-feedback control scheme
(see Figure 1.2 with F (s) = 1):

C(s) = 1.06
(3s + 1)(8s + 1)

3s(2s + 1)
. (2.7)

This assures a crossover frequency of 0.3 rad/s and a phase margin of slightly
more than 45 deg. The Bode diagram of the open-loop transfer function
C(s)P (s) is shown in Figure 2.3. The designed controller corresponds to a
PID controller in series form (1.22) where K ′

p = 1.06, T ′
i = 3, T ′

d = 8, and
N ′ = 4 or, equivalently, K ′

p = 2.83, T ′
i = 8, T ′

d = 3, and N ′ = 1.5. These con-
trollers can be converted in a PID controller in ideal form (1.20) by applying
the following formulae:

Ti = T ′
i +

(
1 − 1

N ′

)

Kp = K ′
p

Ti

T ′
i

Td = T ′
d

(
T ′

i

Ti
− 1

N ′

)

N =
TdN

′

T ′
d

(2.8)

In both cases, it follows that Kp = 3.18, Ti = 9, Td = 0.67 and N = 1/3. It
can be seen that N and N ′ are not within the typical range of 5÷20 and they
do have a significant role in the overall controller design procedure. Indeed,
setting N = 1/3 in the ideal PID controller means that the additional pole
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introduced by the derivative filter is still at a higher frequency than the two
controller zeros (the two zeros are at s = −0.121 and s = −1.026, while the
introduced pole is at s = −4.48). The fact that the derivative part provides a
phase lead is actually evident in the series controller, since N ′ is grater than
one.
Similar considerations apply if a pole-placement technique is adopted. Suppose
that an ideal PID controller (1.20) is applied to the tank level process (2.6).
The following characteristic equation results:

τ
Td

N
s4 +

(
τ +

Td

N

)
s3 +

(
1 + KpKTd

(
1 +

1
N

))
s2

+KKp

(
1 +

Td

NTi

)
s +

KKp

Ti
= 0

(2.9)

Assume now that the location of the desired closed-loop poles is such as there
are two complex poles at a distance λ from the origin and with the same
complex and real part (i.e., s = (−1 ± j)/(λ

√
2)) so that they have a corre-

sponding damping factor of
√

2/2. Then, the two remaining poles are placed
in the same position on the real axis at a distance of −1/λ from the origin.
In this way the desired characteristic equation is(

s2 +

√
2

λ
s +

1
λ2

) (
s +

1
λ

)2

=

s4 +
2 +

√
2

λ
s3 +

2 + 2
√

2
λ2

s2 +
2 +

√
2

λ3
s +

1
λ4

= 0

(2.10)

Comparing the polynomial coefficients, the following PID parameters can be
determined by fixing λ = 3:

Kp = 3.36, Ti = 8.68, Td = 0.463, N = 0.296. (2.11)

It turns out that the value of N is significantly outside the typical range also
in this case, but this corresponds to a series controller with phase lead (i.e.,
with N ′ > 1). Actually, the parameters of the corresponding PID controller
in series form are:

K ′
p = 3.12, T ′

i = 8.08, T ′
d = 2.18, N ′ = 1.39. (2.12)

and the resulting zeros of the controller are s = −0.12 and s = −0.46 while
the poles are at s = 0 and s = −0.64. It is worth stressing that the choice of
λ = 3 results in a control system that has, as in the previous case, a crossover
frequency of about 0.3 rad/s and a phase margin of about 45 deg. The Bode
diagram of the open-loop system C(s)P (s) is presented in Figure 2.4. The
similarity with the previous one is evident. In order to verify the improve-
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Fig. 2.3. Bode plot of the open-loop transfer function C(s)P (s) resulting from the
lead-lag design (Process (2.6))
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Fig. 2.4. Bode plot of the open-loop transfer function C(s)P (s) resulting from the
pole-placement design (Process (2.6))
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ment in the performance given by the derivative action, the pole-placement
approach is applied also with a PI controller (1.8). The characteristic equation
is in this case:

τs3 + s2 + KKps +
KKp

Ti
= 0. (2.13)

It has to be noted that there are three poles to be placed but only two design
parameters, while in the previous case there were four conditions for four
parameters, because of the presence of the derivative filter parameter N (N ′).
Thus, a dominant pole design strategy is adopted, namely, only the location
of the two dominant poles is selected, while the location of the third pole is
checked at the end. In this context, the two dominant poles are chosen as
in the previous case at s = (−1 ± j)/(λ

√
2). Denoting as δ the third time

constant, the desired characteristic equation is:(
s2 +

√
2

λ
s +

1
λ2

) (
s +

1
δ

)

= s3 +

(√
2

λ
+

1
δ

)
s2 +

(
1
λ2

+

√
2

λδ

)
s +

1
λ2δ

= 0.

(2.14)

By comparing the coefficients of Equations (2.13) and (2.14) it follows that:
√

2
λ

+
1
δ

=
1
τ

(2.15)

KKp

τ
=

1
λ2

+

√
2

δλ
(2.16)

KKp

τTi
=

1
λ2δ

(2.17)

From Equation (2.15) it turns out that the smaller λ is the higher δ is and
therefore the system cannot be made arbitrarily fast. Indeed, it is δ > 0 (i.e.,
the system is asimptotically stable) if λ <

√
2τ and therefore there is a clear

limitation in the nominal performance. The value of λ = 3.5 (that implies
δ = 10.4) is eventually selected in order to achieve the best performance
(Isaksson and Graebe, 2002). The resulting PI parameters are Kp = 2.41 and
Ti = 15.4.
Set-point step responses and load disturbance responses obtained by the two
designed PID controllers and the PI controller are shown in Figures 2.5 and
2.6. It appears that the two PID controllers give very similar responses and
they outperform the PI controller in the load disturbance rejection task. Thus,
the benefits of the derivative action appears in this case.
Summarising, from the examples presented, it can be deduced that, for a PID
controller in series form, it can be sensible to choose a fixed derivative factor
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Fig. 2.5. Set-point step response for the designed controllers (Process (2.6)). Solid
line: phase-lag PID; dashed line: pole-placement PID; dotted line: PI.
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Fig. 2.6. Load disturbance step response for the designed controllers (Process (2.6)).
Solid line: phase-lag PID; dashed line: pole-placement PID; dotted line: PI.
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N ′ > 1, as a controller with a phase lead might result (note that the maximum
phase lead depends only on N ′ and it is achieved when N ′ = 10). Conversely,
for a PID controller in ideal form Ci1a(s) (1.20), the necessary phase lead
might be achieved with values of N also less than one and therefore fixing it
to a constant value greater than one (in the range from 8 to 16 as is done in
the vast majority of the industrial implementations (Ang et al., 2005)) can
represent an unnecessary limitation of the performance.
It is worth stressing that if the alternative output-filtered form of the ideal
controller Ci2a(s) (1.23) (or Ci2b(s) (1.24)) is adopted, the reasoning related
to the series form has to be applied, since the filter is in series with the overall
controller transfer function. Thus, if this structure is adopted, the choice of
the value of the filter time constant Tf is more intuitive.
In any case, it appears from this analysis that the tuning of a PID controller
should involve four parameters, since the derivative filter plays a major role
in the overall control system performance.

2.4 Simulation Results

In order to understand better the previously described problems associated
with the design of the derivative filter, some simulation results are given.
Consider the process

P (s) =
1

s + 1
e−0.2s. (2.18)

Then, consider a PID controller whose parameters are selected according to
the Ziegler–Nichols rules based on the frequency response (note that the ulti-
mate gain Ku is equal to 8.5 and the ultimate period is Pu = 1.34). Both the
ideal form (1.20) and the series form (1.22) are evaluated. The controller pa-
rameters are reported in Table 2.1, where the conversion between the ideal and
series structure has been performed by means of formulae (1.17), i.e., without
taking into account the derivative filter. Note that Ti = 4Td, that is, the two
controller zeros are in the same position for the series controller and for the
ideal one if the derivative filter is not considered. The derivative filter time

Table 2.1. Parameters for the ideal and series PID controller for the examples of
Section 2.4

Ziegler–Nichols Kappa–Tau

Kp 5.00 5.74
Ti 0.672 0.66
Td 0.168 0.15
K′

p 2.50 3.75
T ′

i 0.336 0.43
T ′

d 0.336 0.23
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Fig. 2.7. Load disturbance step response for the PID controllers with Ziegler–
Nichols parameters (Process (2.18)). Solid line: ideal form with derivative filter;
dashed line: series form with derivative filter.

constant has been selected as N = N ′ = 10. The control system responses
when a load disturbance unitary step is applied in both cases are plotted in
Figure 2.7. The significantly different behaviour of the control system ap-
pears. This is due to the fact that the actual zeros of the ideal controller are
in s = −2.77± j0.60, while they should be the same as those of the series con-
troller that are both in s = −2.98. Note that the phase margin of the resulting
ideal controller is 44.2 deg (the crossover frequency is ωc = 8.57 rad/s), while
that of the series one is 55.1 deg (the crossover frequency is ωc = 6.19 rad/s).
The same reasoning is applied by considering the Kappa–Tau tuning rules pro-
posed in (Åström and Hägglund, 1995). The parameters obtained are reported
in Table 2.1, while the load disturbance unitary step responses are plotted in
Figure 2.8. Also in this case the two responses are significantly different. The
series controller assures a phase margin of 41.7 deg (ωc = 7.83 rad/s), while
the ideal one, because of the presence of the derivative filter, provides a phase
margin of just 15.9 deg (ωc = 11.2 rad/s). These results confirm the issues
discussed in the previous sections that imply the fact that the design of the
derivative filter should be considered carefully. The filtering of the measure-
ment noise is also considered hereafter. Consider the same process (2.18) with
the following controllers:

• a PI controller with Kp = 4 and Ti = 1;
• a derivative-filtered PID controller in ideal form (1.20) with Kp = 4, Ti =

1, Td = 0.1 and N = 10;
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• a derivative-filtered PID controller in ideal form (1.20), where the deriva-
tive filter is a second-order system, with again Kp = 4, Ti = 1, Td = 0.1
and N = 10;

• an output-filtered PID controller in ideal form (1.23) with Kp = 4, Ti = 1,
Td = 0.1 and Tf = 0.1;

• an output-filtered PID controller in ideal form (1.24), where the filter is a
second-order system with Kp = 4, Ti = 1, Td = 0.1 and Tf = 0.1;

• a derivative-filtered PID controller in series form with K ′
p = 3.55, T ′

i =
0.89, T ′

d = 0.11, N ′ = 10 (note that these parameters have been found by
converting the parameters of the controllers in ideal form).

In all the cases a measurement white noise whose amplitude is in the range [−5·
10−3, 5 ·10−3] is applied to the control system. The resulting process variables
and the control variables are plotted in Figures 2.9–2.14. It can be seen that
the control variable is less noisy for the output-filtered PID structures. This
is somewhat obvious, since the proportional action is also responsible for the
amplification of the measurement noise and therefore the filter applied to the
whole control variable is more effective than that applied to the derivative
action only. If a second-order filter is adopted, the reduction of the noise
effect is more evident. However, if the value of Tf in an output-filtered PID
controller in ideal form is such that the additional poles are not at a much
higher frequency with respect to the zeros (for a more effective filtering), then
the presence of the second-order filter might influence the control performance.
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Fig. 2.8. Load disturbance step response for the PID controllers with Kappa–Tau
parameters (Process (2.18)). Solid line: ideal form with derivative filter; dashed line:
series form with derivative filter.
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Fig. 2.9. Load disturbance step response (with noise measurement) for the PI
controller

0 1 2 3 4 5 6 7 8 9 10
0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time

pr
oc

es
s 

va
ri

ab
le

0 1 2 3 4 5 6 7 8 9 10
1.5

1

0.5

0

time

co
nt

ro
l v

ar
ia

bl
e

Fig. 2.10. Load disturbance step response (with noise measurement) for the ideal
PID controller with a first-order derivative filter
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Fig. 2.11. Load disturbance step response (with noise measurement) for the ideal
PID controller with a second-order derivative filter
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Fig. 2.12. Load disturbance step response (with noise measurement) for the ideal
PID controller with a first-order output filter
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Fig. 2.13. Load disturbance step response (with noise measurement) for the ideal
PID controller with a second-order output filter
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Fig. 2.14. Load disturbance step response (with noise measurement) for the series
PID controller with a first-order derivative filter
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2.5 Four-parameters Tuning

In the previous sections it has been underlined that problems associated with
the derivative action that prevent a wide use of it are not just due to the noise.
Indeed, tuning rules for a PID controller should involve four parameters, as
also stressed in (Luyben, 2001a).
The most well-known design method that provides the values of all the four
parameters of an ideal output-filtered PID controller is surely that based on
the Internal Model Control (IMC) approach (Rivera et al., 1986; Morari and
Zafiriou, 1989). It can be remarked that a user-chosen parameter allows the
handling of the trade-off between aggressiveness and robustness. The effective-
ness of this tuning methodology has been shown in the literature; however, it
has to be borne in mind that, being based on a pole-zero cancellation, it is not
suitable for lag-dominant processes for which a very sluggish load disturbance
response occurs (Shinskey, 1994; Shinskey, 1996). In this context an effective
modification has been proposed in (Skogestad, 2003).
Recently, tuning rules that comprises also the derivative filter has been pro-
posed in (Åström and Hägglund, 2004). They are based on the maximisation
of the integral gain (so that the integrated error when a load disturbance oc-
curs is minimised), subject to a robustness constraint. It is also stressed that
the appropriate value of the ratio between the integral time constant and the
derivative time constant should vary depending on the process dynamics (in
particular, depending on the relative dead time of the process) and in most
cases is less than four.
Similar conclusions are drawn in (Kristiansson and Lennartson, 2006). There,
four-parameters tuning rules are proposed which take into account the trade-
off between load disturbance rejection performance (in terms of integrated
absolute error) and control effort, with a constraint on the generalised maxi-
mum sensitivity, which is a measure of the robustness of the control system.
It is shown that the benefits of the derivative action can be severely limited if
the ratio between the integral time constant and the derivative time constant
is fixed to four and if the derivative filter factor is fixed in a PID controller in
ideal form Ci1a(s) (1.20) (or Ci1b(s) (1.21)).
For this PID controller, it is suggested to set Ti/Td = 2.5. Further, it is shown
that considering the derivative filter time constant as a true tuning parameter
allows a significant improvement of the overall performance.

2.6 Conclusions

In this chapter the design of the derivative filter has been discussed. Although
the analysis provided and the examples presented are certainly not exhaustive,
they are sufficient to show that the choice of the controller structure and of
the derivative filter factor is indeed a critical issue and the PID controller
should be considered as a four-parameters controller. In fact, the derivative
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action is a key factor in improving the control system performance and the
reason for being rarely adopted in practice is not only the amplification of the
measurement noise.
In particular, it has been shown that predefining the derivative filter factor in
an ideal form controller Ci1a(s) (1.20) (or Ci1b(s) (1.21)) might severely limit
the performance. If a series controller Cs(s) (1.22) is adopted, then the filter
does not influence the location of the controller zeros. However, in this case
the two zeros have to be real and this factor might limit the performance as
well. Thus, the most convenient choice appears to be the use of an output-
filtered ideal form PID controller Ci2a(s) (1.23) (or Ci2b(s) (1.24)) since this
is the most general expression and the drawbacks of the other two forms are
avoided. Further, effective tuning rules for the selection of the four parameters
Kp, Ti, Td, and Tf are available in this case.
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Anti-windup Strategies

3.1 Introduction

One of the most well-known possible source of degradation of performance is
surely the so-called integrator windup phenomenon, which occurs when the
controller output saturates (thus, this problem is of particular concern at the
process start-up).
Strategies for limiting this effect are illustrated and compared in this chapter.

3.2 Integrator Windup

The integrator windup effect is explained in this section. When a set-point
change is applied, the control variable might attain the actuator limit during
the transient response. In this case the system operates as in the open-loop
case, since the actuator is at its maximum (or minimum) limit, independently
of the process output value. The control error decreases more slowly as in
the ideal case (where there is no saturation limits) and therefore the integral
term becomes large (it winds up). Thus, even when the value of the process
variable attains that of the reference signal, the controller still saturates due
to the integral term and this generally leads to large overshoots and settling
times.
The situation is illustrated in the following example. Consider the control
scheme depicted in Figure 3.1 which is similar to that of Figure 1.2 but in
this case the controller output u differs in general from the process input u′

because of the presence of an actuator saturation with a upper limit umax and
an lower limit umin. In this context the process

P (s) =
1

10s + 1
e−4s (3.1)

is controlled by an ideal PID controller (the derivative filter is not adopted for
simplicity) with Kp = 3, Ti = 8 and Td = 2 (note that these are the param-



36 3 Anti-windup Strategies

ye C Pu
umax

umin

r u’

Fig. 3.1. General control scheme with saturation

eters obtained by employing the Ziegler–Nichols tuning rules). The actuator
saturation limits are umin = 0 and umax = 1.5. The set-point unitary step
response (starting from null initial conditions) is plotted in Figure 3.2. It can
be seen that at time t = 15 the process output attains the set-point value
but, despite this, the process input still remains (for quite a long time) at the
maximum level because of the high value of the integral term. This causes a
significant overshoot which is recovered after a long time, that is, when the
integral term decrement is sufficient for the control variable to be lower than
the saturation limit.
From this example it is clear that the nonlinear dynamics of the actuator can
be detrimental for the performance and has therefore to be somehow taken
into account in the design of the PID controller.
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Fig. 3.2. Set-point step response illustrative of the integrator windup phenomenon.
Solid line: process output; dashed line: process input; dotted line: integral term.
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It has to be noted that the integrator windup occurs mainly when a step is ap-
plied to the reference set-point signal rather than to the manipulated variable
(i.e., in the presence of a load disturbance) (Vrancic, 1997). Furthermore, the
most significant effects of the integrator windup take place when the process
is of low order (and the dead time is small with respect to the time constant).
For these reasons, in the following part of this chapter the analysis will be
restricted to the set-point response of first-order-plus-dead-time systems.

3.3 Anti-windup Techniques

In order to cope with the presence of the actuator saturation, two design
approaches can be followed in general. In the first one the nonlinearity is
considered explicitly from the beginning of the design phase and the control
law is derived in the context of the nonlinear control theory. Although this
is a more rigorous approach, it might be too complicated to be applied in
practical cases where the cost (and the fast commissioning) of the controller is
of primary importance. In other words, the advantages provided by the use of
a standard PID control law are no more exploited (note that this is not entirely
true, as it will be shown in Chapter 5). In the second approach, on the other
hand, the control law is designed disregarding the actuator nonlinearity, so
that a PID controller can be adopted. Then, the detrimental effects due to the
integrator windup are compensated by conveniently adopting an additional
functionality designed for this purpose (Kothare et al., 1994). These anti-
windup techniques are analysed hereafter.
It is worth noting at this point that if the PID controller is implemented
in incremental form (1.38) (see Section 1.7), the windup effect is naturally
avoided as the integral action is ‘outside’ the PID control law (note that there
is no accumulation of the error in Equation (1.38)).

3.3.1 Avoiding Saturation

The most intuitive way of avoiding the integrator windup is to avoid the sat-
uration of the control variable. This can be done by limiting or smoothing
the set-point changes and/or by detuning the controller (i.e., by selecting a
more sluggish controller). It is obvious that this requires a somewhat signifi-
cant additional effort in the controller design and, most of all, it might imply
(especially if the controller is detuned) an unacceptable decrement of the per-
formance. Thus, this approach is not advisable in practical cases, although it
has to be stressed that very effective methodologies have been recently de-
veloped for the determination of a convenient reference signal to be adopted
for the achievement of a satisfactory transient response without exceeding the
saturation limits (see Chapter 5).
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3.3.2 Conditional Integration

A classical effective methodology is the so-called conditional integration. It
consists of switching off the integration (in other words, the error to be in-
tegrated is set to zero) when a certain condition is verified. For this reason
this method is also called integrator clamping. The following options can be
implemented:

• the integral term is limited to a predefined value;
• the integration is stopped when the error is greater than a predefined

threshold, namely, when the process variable value is far from the set-
point value;

• the integration is stopped when the control variable saturates, i.e., when
u �= u′;

• the integration is stopped when the control variable saturates and the
control error and the control variable have the same sign (i.e., when u ·e >
0).

The first two methods, which appear to be particularly suitable for the start-
up phase of batch processes, have the disadvantage that they might result in a
steady-state error. Actually, in the first case the limitation of the integral term
must not prevent the attainment of the set-point value and in the second case
it has to be avoided that the controller gets stuck at a (steady-state) value
such that the control error is still greater than the threshold. It appears that
both methods require an additional design parameter that has to be carefully
selected in order to properly handle the trade-off between the need of avoiding
the integrator windup and the need of assuring a zero steady-state error. This
indeed is a major drawback as it somehow limits the ease of use of the PID
controller, which is always of concern.
These problems are avoided in the third and fourth techniques. However, with
respect to the third method, the fourth one has the great advantage that the
integrator is not inhibited when it helps to push the control variable away
from the saturation. For this reason it should be preferred to the others, as
also stated in (Hansson et al., 1994).
A technique that is slightly different from the previous ones is the so-called
preloading (Shinskey, 1994; Shinskey, 1996). It consists of setting the integral
term to a predefined value Imax or Imin during saturation. This value should
be normally chosen smaller than the steady-state value of the integral term
in order to avoid an excessive overshoot. Hence, there is an additional design
parameter whose proper selection might require the knowledge of the gain of
the process. Further, the presence of load disturbances can represent a severe
drawback of the method.

3.3.3 Back-calculation

A valuable alternative approach to conditional integration is the so-called
back-calculation, which consists of recomputing the integral term when the
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Fig. 3.3. Anti-windup scheme with back-calculation

controller saturates. In particular, the integral value is reduced or increased
(when the controller output is greater than its upper limit umax or when it is
less than its lower limit umin, respectively) by feeding back the difference of
the saturated and unsaturated control signal, as shown in Figure 3.3, where Tt

is called the tracking time constant (Åström and Hägglund, 1995). Formally,
denoting by ei the integrator input, it is:

ei =
Kp

Ti
e +

1
Tt

(u′ − u) (3.2)

It has to be noted that the back-calculation technique has an inherent observer
property (Walgama and Sternby, 1990). In particular, it aims at estimating
the correct state of the controller when it does not correspond to the input of
the process (because of the saturation of the actuator).
The value of Tt clearly determines the rate at which the integral term is reset
and therefore its choice determines the performance of the overall control
scheme. In order to help the operator in this context, tuning rules for the
tracking time constant have been proposed. In (Åström and Hägglund, 1995)
it is suggested that

Tt =
√

TiTd. (3.3)

The main drawback of this formula is that it cannot be adopted in PI control
where Td = 0. Alternatively, in (Bohn and Atherton, 1995) it is suggested
that

Tt = Ti. (3.4)

It has to be stressed at this point that the back-calculation technique includes
the so-called conditioning technique (Hanus et al., 1987; Walgama et al., 1991),
which represent a general anti-windup and bumpless transfer method. Indeed,
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both the commutation between manual and automatic mode and the integra-
tor windup effect can be seen in the general context of dealing with a situation
when the actual input of the process is different from the controller output.
The conditioning technique assures that when the difference between the ac-
tual control variable and the desired one disappears, then the process output
attains the steady-state with the same dynamics as the unconstrained closed-
loop system. In this framework the suggestion is to set

Tt = Kp. (3.5)

The correlation between anti-windup and bumpless transfer between manual
and automatic mode is depicted in Figure 3.4. It appears that, as stated in
(Åström and Hägglund, 1995), the controller can be interpreted as having a
control mode, when it operates like an ordinary controller, and a tracking
mode, when the integrator tracks a specified signal (note that the tracking
mode is automatically disconnected when the signal to be tracked is the con-
troller output).
Note that the saturation block in Figure 3.3 (and 3.4) might represent the
true actuator or, alternatively, a model of it if a measure of the actuator out-
put is not available. An alternative scheme, based on the use of a dead-zone,
that exploits a model of the actuator and that implements the same back-
calculation approach is shown in Figure 3.5 (Bohn and Atherton, 1995). It
can be seen that if the control variable is in the range [umin, umax], then the
integrator output depends on the error signal only, but if the control variable
is outside this range (i.e., the actuator is saturating), then the integrator out-
put is modified by a quantity that depends on the dead-zone gain (which has
the same physical meaning of the tracking time constant).
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Fig. 3.4. Control scheme for anti-windup and bumpless transfer between manual
(M) and automatic (A) mode
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Fig. 3.5. Alternative anti-windup scheme with back-calculation

3.3.4 Combined Approaches

Methods that combine the conditional integration and the back-calculation
approach have been also presented in the literature. In particular, in (Bohn
and Atherton, 1995) it is proposed to apply an additional limit to the
proportional-derivative part of the manipulated variable adopted to gener-
ate the anti-windup feedback signal. Thus, there is the significant drawback
that an additional parameter has to be selected by the user.
Alternatively, in (Hodel and Hall, 2001) the summing junction that performs
the feedback in the integral term is activated by a switch that is closed when
a certain condition is met, namely, when

u �= u′ and e(u − ū) > 0 (3.6)

where

ū :=
umax + umin

2
(3.7)

The control scheme is shown in Figure 3.6, where it appears that α denotes the
design parameter. This technique has been denominated Variable-Structure
PID (VSPID) anti-windup method and aims at keeping u as close as possible
to u′ during saturation so that the controller returns as fast as possible to
linear operation. In this context, as a rule of thumb, it is suggested that α be
set in such a way that the integrator feedback loop, during saturation, settles
from two to five times faster than the closed-loop.
Finally, in (Visioli, 2003a), an alternative switching condition has been pro-
posed, namely, the back-calculation is employed when the controller saturates,
the control error has the same sign of the manipulated variable and the pro-
cess output has left its previous set-point value. Assuming that the required
control task is to perform an output transition from a set-point value y0 to a
set-point value y1, the integrated input can be formally expressed as
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Fig. 3.6. Variable-structure PID anti-windup scheme

ei =

⎧⎪⎪⎨
⎪⎪⎩

Kp

Ti
e +

1
Tt

(u′ − u) if u �= u′ and u · e > 0 and
{

y > y0 if y1 > y0

y < y0 if y1 < y0

Kp

Ti
e otherwise

(3.8)
The rationale of this method is to avoid stopping the integration at the be-
ginning of the transient response when the saturation is actually caused by
the proportional action (this is particularly important when the ratio between
the dead time and dominant time constant of the process is high) and at the
same time to allow the decrease of the value of the tracking-time constant in
order to have a smaller overshoot when the dead-time of the process is small.
The suggested value for the tracking-time constant with this method is

Tt = 0.03Ti. (3.9)

It should be noted that in practical cases the condition y > y0 (or, equivalently,
y < y0) has to cope with the measurement noise. A simple sensible solution is
to define a noise band NB (Åström et al., 1993) (whose amplitude should be
equal to the amplitude of the measurement noise) and to rewrite the condition
as y > y0 + NB .

3.3.5 Automatic Reset Implementation

When the PI control part is in the automatic reset configuration (see Figures
1.5 and 1.9), the anti-windup scheme can be implemented very easily by in-
serting the saturation function in the control scheme as depicted in Figures
3.7 and 3.8.
In the first case the model of the saturation limits the overall control variable,
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Fig. 3.7. Anti-windup scheme with PI controller in automatic reset configuration

1
Ti s+1

Kp

umin

maxu

u

Fig. 3.8. Alternative anti-windup scheme with PI controller in automatic reset
configuration
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Fig. 3.9. Nonlinear function for implementing the preloading anti-windup technique
with PI controller in automatic reset configuration

while in the second case it limits the integral action only. It is worth noting
that the preloading technique can be easily implemented in the latter case by
replacing the saturation function with the nonlinear function shown in Figure
3.9.
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3.4 Simulation Results

In order to understand better the problems due to the integrator windup
and to analyse the different antiwindup methods, the following results are
presented. For the sake of clarity, the considered techniques are summarised
and denoted as follows:

• CI: the conditional integration technique where the integral term is frozen
when the control variable saturates and u · e > 0;

• BC1: the back-calculation technique where Tt =
√

TiTd;
• BC2: the back-calculation technique where Tt = Ti;
• BC3: the back-calculation technique where Tt = Kp (conditioning tech-

nique);
• CI-BC: the combined conditional integration and back-calculation ap-

proach proposed in (Visioli, 2003a) (see (3.8)), where Tt = 0.03Ti;
• VSPID: the variable-structure PID anti-windup method (see (3.6)–(3.7))

with α = 10;
• S1: the anti-windup technique for the PID controller in automatic reset

configuration where the saturation model is applied to the whole control
variable (see Figure 3.7);

• S2: the anti-windup technique for the PID controller in automatic reset
configuration where the saturation model is applied to the reset term (see
Figure 3.8);

• PR: the preload technique (with Imax = 0.8) implemented by means of
the nonlinear function of Figure 3.9.

The following two processes are then considered:

P (s) =
1

10s + 1
e−Ls L = 2, 8 (3.10)

In both cases, the Ziegler–Nichols tuning rules have been adopted (the re-
sulting parameters have been properly converted for the series controllers).
It results Kp = 6, Ti = 4 and Td = 1 for L = 2, and Kp = 1.5, Ti = 16
and Td = 4 for L = 8. The derivative action has been applied to the process
output. Then, it has been fixed umax = 1.5 and umin = 0.
In order to understand better the following results, related to a unitary step
set-point change, the cases where no saturation is present and where the sat-
uration is present and no anti-windup strategy has been adopted are shown
in Figures 3.10 and 3.11 respectively. Indeed, it can be seen that the windup
effect is not present when L = 8. Thus, in this case it is essential that the
anti-windup method would not decrement the performance (note that this
confirms that the windup is more significant when the dead time is small with
respect to the time constant).
Simulation results for the different anti-windup strategies for both L = 2 and
L = 8 are plotted in Figures 3.12–3.20. In order to analyse better the per-
formance, three indices, namely, the rise time (i.e., the time required for the
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Table 3.1. Performance indices for the different anti-windup methods for L = 2

Rise time Overshoot [%] Settling time

CI 8.48 2.1 12.20
BC1 8.48 4.8 12.12
BC2 8.48 12.2 19.24
BC3 8.48 17.9 21.39
CI-BC 8.48 2.1 12.20
VSPID 9.02 2.1 12.74
S1 8.47 4.7 12.12
S2 8.47 4.7 12.12
PR 8.48 2.1 12.21

Table 3.2. Performance indices for the different anti-windup methods for L = 2

Rise time Overshoot [%] Settling time

CI 23.88 0 48.70
BC1 18.37 2.8 29.85
BC2 10.11 5.0 36.54
BC3 22.81 0.2 47.42
CI-BC 9.00 7.8 43.10
VSPID 23.89 0 48.71
S1 18.36 2.8 29.85
S2 18.36 2.8 29.85
PR 23.50 0 48.36

process output to change from 10% to 90 % of the final steady-state value),
the maximum overshoot and the 5% settling time are reported in Tables 3.1
and 3.2.
From the results presented it can be deduced that the presence of the satu-
ration and the choice of the anti-windup strategy influence significantly the
results and that it is difficult to find a methodology that always provides the
best results.
Actually, the amount of integral term that is present when the control variable
is no more saturated determines the rise time and the overshoot of the process
response. This is evident for example for the conditional integration technique
CI that stops the integration for a somewhat long interval at the beginning
of the transient response during the saturation and this might caused a high
rise time (see Figure 3.12).
For the same reason, when the back-calculation technique is applied the re-
sults depend obviously on the value of the tracking time constant. The most
suitable tuning seems to be Tt =

√
TiTd, but it has to be remembered that

it cannot be applied in the PI control context. The combined approach pro-
vides satisfactory results for both L = 2 and L = 8 (see Figure 3.16), since it
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properly decreases the integral term when when a large overshoot is likely to
occur.
The variable-structure PID methodology does not seem to provide a significant
improvement with respect to the other methods. Note that the performance
achieved cannot be improved significantly by selecting other values for the
design parameter α.
The two series controller performs similarly and better than the preload tech-
nique. Indeed, the solution is simple and effective, although it has to be re-
membered that the series controller does not admit complex zeros and this
might represent a serious limitation in the tuning phase.
In fact, in general, the achieved performance depends significantly on the tun-
ing of the PID parameters in addition to the selected anti-windup strategy.
However, the results presented show in any case the pros and cons of the dif-
ferent considered techniques and give a clear idea of how the problem can be
approached.
It is worth noting that a comparison between different methodologies could
be performed by considering the realisable reference concept, namely, by de-
termining the (new) reference signal that should be applied to the control
system in order to obtain a control variable u equal to the process input u′

obtained by applying the step reference signal (Peng et al., 1996). However,
this is a more theoretical approach that does not always provide a clear idea
of the performance achieved.

0 5 10 15 20 25 30
0

0.5

1

1.5

time

pr
oc

es
s 

va
ri

ab
le

0 5 10 15 20 25 30

2

0

2

4

6

8

10

time

co
nt

ro
l v

ar
ia

bl
e 

an
d 

in
te

gr
al

 te
rm

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

time

pr
oc

es
s 

va
ri

ab
le

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

time

co
nt

ro
l v

ar
ia

bl
e 

an
d 

in
te

gr
al

 te
rm

Fig. 3.10. Process variable, control variable (solid line) and integral term (dashed
line) when no saturation is present for L = 2 (left) and L = 8 (right)
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Fig. 3.11. Process variable, control variable (solid line) and integral term (dashed
line) when no anti-windup is present for L = 2 (left) and L = 8 (right)
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Fig. 3.12. Process variable, control variable (solid line) and integral term (dashed
line) for the conditional integration method CI for L = 2 (left) and L = 8 (right)
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Fig. 3.13. Process variable, control variable (solid line) and integral term (dashed
line) for BC1 with Tt = 2 for L = 2 (left) and with Tt = 8 for L = 8 (right)
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Fig. 3.14. Process variable, control variable (solid line) and integral term (dashed
line) for BC2 with Tt = 4 for L = 2 (left) and with Tt = 16 for L = 8 (right)
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Fig. 3.15. Process variable, control variable (solid line) and integral term (dashed
line) for BC3 with Tt = 6 for L = 2 (left) and with Tt = 1.5 for L = 8 (right)
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Fig. 3.16. Process variable, control variable (solid line) and integral term (dashed
line) for CI-BC with Tt = 0.12 for L = 2 and with Tt = 0.48 for L = 8 (right)
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Fig. 3.17. Process variable, control variable (solid line) and integral term (dashed
line) for the VSPID with α = 10 for L = 2 (left) and for L = 8 (right)
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Fig. 3.18. Process variable, control variable (solid line) and reset term (dashed line)
for the automatic reset configuration S1 for L = 2 (left) and for L = 8 (right)
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Fig. 3.19. Process variable, control variable (solid line) and reset term (dashed line)
for the automatic reset configuration S2 for L = 2 (left) and for L = 8 (right)
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Fig. 3.20. Process variable, control variable (solid line) and reset term (dashed line)
for the preload method PR for L = 2 (left) and for L = 8 (right)

3.5 Experimental Results

3.5.1 Level Control

The different anti-windup techniques have been tested with the experimental
setup for the level control task described in Section A.1. A set-point change
from 1.5 V to 3.5 V is considered and the saturation levels have been fixed
to umax = 4.5 V and umin = 0 V. A PI controller with Kp = 8 and Ti = 10
has been used in all cases (note that, since Td = 0, the back-calculation tech-
nique BC1 where Tt =

√
TiTd has not been evaluated). In order to evaluate

the integrator windup effect, the result obtained with no anti-windup strat-
egy is shown in Figure 3.21. Then, the results obtained with the anti-windup
techniques listed in Section 3.4 are shown in Figures 3.22–3.29. Note that a
noise band of 0.02 V has been fixed for the combined approach CI-BC. Fur-
ther, α has been fixed to 0.02 for the VSPID method (other values can be
selected without changing significantly the process response) and Imax = 2
for the preload technique PR. By evaluating the results it turns out that all
the proposed techniques are indeed effective in providing a good performance,
by reducing significantly the overshoot caused by the integrator windup and,
in general, without impairing the rise time. More specifically, the conditional
integration method allows to achieve a small rise time without overshoot. A
small rise time is achieved also by the anti-windup techniques for the PI con-
troller in automatic reset configuration but in this case a slight overshoot oc-
curs. As expected, the performance obtained by the back-calculation method
largely depends on the value of the selected time constant. Indeed, the some-
what sluggish response obtained by the combined technique is due to the high
value of Tt, since the dead time of the process is rather small and therefore
the combined approach actually behaves as a standard back-calculation tech-
nique. Similar results are obtained also for the other methods, with a slight
overshoot that occurs with the automatic reset configurations S1 and S2.
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Fig. 3.21. Process variable, control variable (solid line) and integral term (dashed
line) when no anti-windup is present for the level control task
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Fig. 3.22. Process variable, control variable (solid line) and integral term (dashed
line) for CI for the level control task
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Fig. 3.23. Process variable, control variable (solid line) and integral term (dashed
line) for BC2 with Tt = Ti = 10 for the level control task
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Fig. 3.24. Process variable, control variable (solid line) and integral term (dashed
line) for BC3 with Tt = Kp = 8 for the level control task
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Fig. 3.25. Process variable, control variable (solid line) and integral term (dashed
line) for CI-BC with Tt = 0.03Ti = 0.3 for the level control task
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Fig. 3.26. Process variable, control variable (solid line) and integral term (dashed
line) for VSPID with α = 10 for the level control task
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Fig. 3.27. Process variable, control variable (solid line) and reset term (dashed line)
for the automatic reset configuration S1 for the level control task
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Fig. 3.28. Process variable, control variable (solid line) and reset term (dashed line)
for the automatic reset configuration S2 for the level control task
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Fig. 3.29. Process variable, control variable (solid line) and reset term (dashed line)
for the preload method PR for the level control task

3.5.2 Temperature Control

A temperature control task has been also considered by means of the labo-
ratory setup described in Section A.2. In particular, a set-point value of 3 V
has been imposed (starting from the room temperature, which corresponds to
about 0.5 V) and the actuator limits have been fixed to umax = 4.5 V and
umin = 0 V.
A PI controller has been tuned in order to achieve deliberately a very signifi-
cant integrator windup so that the effectiveness of the anti-windup techniques
can be better evaluated. Thus, the values Kp = 1 and Ti = 100 have been
fixed. The corresponding process response (no anti-windup) is shown in Fig-
ure 3.30. It can be seen that the windup phenomenon occurs with respect to
both the actuator limits. Results related to the application of the different
considered anti-windup methods are shown in Figures 3.31–3.38. Note that,
as with the level control task, the value NB = 0.02 V has been fixed for the
combined approach CI-BC, α = 3 · 10−3 for the VSPID method (performance
does not change significantly by varying this value) and Imax = 1.5 for the
preload technique PR. It appears that all the methods allow to avoid the inte-
grator windup effect (it is worth stressing again that the detrimental effect of
the integrator windup occurs when the control variable saturates even when
the process variable attains the set-point value) and they basically provide
the same performance.
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Fig. 3.30. Process variable, control variable (solid line) and integral term (dashed
line) when no anti-windup is present for the temperature control task
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Fig. 3.31. Process variable, control variable (solid line) and integral term (dashed
line) for CI for the level temperature task
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Fig. 3.32. Process variable, control variable (solid line) and integral term (dashed
line) for BC2 with Tt = Ti = 10 for the temperature control task
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Fig. 3.33. Process variable, control variable (solid line) and integral term (dashed
line) for BC3 with Tt = Kp = 8 for the temperature control task
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Fig. 3.34. Process variable, control variable (solid line) and integral term (dashed
line) for CI-BC with Tt = 0.03Ti = 0.3 for the temperature control task
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Fig. 3.35. Process variable, control variable (solid line) and integral term (dashed
line) for VSPID with α = 3 · 10−3 for the temperature control task
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Fig. 3.36. Process variable, control variable (solid line) and reset term (dashed line)
for the automatic reset configuration S1 for the temperature control task
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Fig. 3.37. Process variable, control variable (solid line) and reset term (dashed line)
for the automatic reset configuration S2 for the temperature control task
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Fig. 3.38. Process variable, control variable (solid line) and integral term (dashed
line) for the preload method PR for the level temperature task

3.6 Conclusions

In this chapter the integrator windup effect in the context of PID controllers
has been analysed and different anti-windup techniques have been presented
and compared.
Actually, all the considered methods are effective and each one has partic-
ular features that should be taken into account in a given application (in-
deed, there is not a technique that performs better than the others for all the
kind of processes, PID parameters and actuator limits). From one point of
view, the conditional integration approach has the advantage of being with-
out an additional tuning parameter, but, from another point of view, the
back-calculation methodology provides the capability to influence the tran-
sient response through the tuning of the tracking time constant (namely, a
less aggressive response can be imposed by lowering the value of Tt). The
combined approach seems to be less sensitive to the characteristics of the
process. The two techniques considered for the PI(D) controller in automatic
reset configuration do not show particular differences. With respect to them,
a significant improvement in the performance does not actually emerges by
applying the VSPID or the preload technique, despite they present a tuning
parameter.
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Set-point Weighting

4.1 Introduction

One of the main difficulties in the tuning of the PID parameters is to ad-
dress at the same time different control specifications. In particular, as al-
ready mentioned in Section 1.6.2, achieving a high load disturbance rejection
performance generally results in an aggressive tuning that provides a too os-
cillatory set-point step response. This is actually true especially when the
apparent dead time of the process is small (with respect to the dominant
time constant). If both specifications are of concern in a given application, a
good solution is to use a set-point weight, i.e., a two-degree-of-freedom con-
trol scheme (Araki, 1988), where both a feedback and a feedforward action are
exploited. In this way, the set-point response task can be addressed without
modifying the load disturbance rejection performance.
In this chapter, different methodologies for the design of the feedforward part
are described. Specifically, the use of a fixed value for the set-point weight is
compared to the use of a variable set-point weight, where the latter choice is
made in order to avoid the increase of the rise time due to the smoothing of
the reference signal applied to the closed-loop system.

4.2 Constant Set-point Weight Design

In the following analysis, the PID control law considered is

u(t) = Kp

(
βr(t) − y(t) +

1
Ti

∫ t

0

e(τ)dτ − Td

dy(t)
dt

)
. (4.1)

Note that, for the sake of simplicity, the derivative filter is not considered here.
It will be specified in the different considered methodologies. The adoption of
this control law corresponds to the adoption of a feedforward/feedback control
strategy that is depicted in the block diagram of Figure 1.11, where
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C(s) = Kp

(
1 +

1
Tis

+ Tds

)
(4.2)

and

F (s) =
1 + βTis

1 + Tis + TiTds2
, (4.3)

as it can be easily derived from Expression (1.32). Intuitively, given a set of
parameters Kp, Ti and Td, the adoption of a set-point weight β < 1 allows
the reduction of the overshoot in the set-point response, since the effect of
the proportional action is reduced (note again that this is achieved without
affecting the load disturbance rejection performance). From another point of
view, the overshoot is reduced by smoothing the set-point signal by means of
the filter F .
However, this is countered by the fact that a slower response (in terms of rise
time) is obtained. Actually, parameter β has a clear physical meaning and its
tuning can be easily done by taking into account the fact that reducing its
value produces a more sluggish response with less overshoot.
This fact is clarified by the following example. Consider the process

P (s) =
1

10s + 1
e−4s. (4.4)

A PID controller tuned according to the Ziegler–Nichols rules with Kp = 3,
Ti = 8 and Td = 2, and with different set-point weights, namely β = 1,
β = 0.5 and β = 0 has been applied. The resulting process outputs in the
three cases are plotted in Figure 4.1. It is evident that the effect of decreasing
the set-point weight value is indeed to make the response less oscillatory. In
order to understand better the role of the set-point filter F , its output in the
three experiments (i.e., the actual signal applied to the closed-loop system)
is shown in Figure 4.2. Finally, it is worth stressing that the reduction of the
overshoot obviously implies that the control effort is reduced as well, as it
appears from the resulting control signals plotted in Figure 4.3.
In any case, in order to avoid time-consuming experiments, tuning rules have
been devised to determine explicitly a suitable value of β starting from a model
of the process (see, (Hang et al., 1991; Åström and Hägglund, 1995; Åström et
al., 1998; Leva and Colombo, 1999; Panagopoulos et al., 2002)). For example,
if a dominant pole design method is applied (see Section 2.3), the set-point
weight can be chosen in order to define a zero that cancels the additional pole
whose position is not imposed (Åström and Hägglund, 1995). Alternatively,
the set-point weight can be determined so that the maximum of the magnitude
of the Bode diagram of the transfer function between the set-point and the
process variable is equal to one (Panagopoulos et al., 2002). In case this is
not achieved even with β = 0 the adoption of an additional first-order filter
is suggested. In fact, the absence of resonance peaks prevents the occurrence
of large overshoots.
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Fig. 4.1. Process variable for different values of the set-point weight. Solid line:
β = 1; dashed line: β = 0.5; dotted line: β = 0.

These considerations demonstrate how the set-point weight is indeed a very
useful parameter because it allows the solution of the tuning problem when
both the set-point following and the load disturbance rejection performances
are of concern with a modest increase of the design effort.

4.3 Variable Set-point Weighting

4.3.1 Methodology

In the previous sections, it has been pointed out that when the normalised
dead time Θ of the process (i.e., the ratio between the apparent dead time
of the process and the dominant time constant) is small, the tuning that
provides a good load disturbance rejection performance also gives a set-point
response that exhibits a large overshoot. The use of a (constant) set-point
weighting allows the reduction of the overshoot but this is countered by an
increasing of the rise time. With the aim of providing a smaller overshoot
without decreasing the set-point response speed, the use of a variable set-
point response is proposed in (Hang and Cao, 1996).
The PID controller adopted in this case is the one described in Expression
(4.1), where the derivative action is filtered by means of a first-order filter
whose time constant is Td/10 and where the value of the set-point weight
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Fig. 4.2. Filtered set-point for different values of the set-point weight. Solid line:
β = 1; dashed line: β = 0.5; dotted line: β = 0.
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Fig. 4.3. Control variables for different values of the set-point weight. Solid line:
β = 1; dashed line: β = 0.5; dotted line: β = 0.
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Fig. 4.4. Block diagram of the control scheme with variable set-point weighting

β varies during the transient, depending on the control error and on the
normalised dead time. The corresponding block diagram of the control scheme
is shown in Figure 4.4. Note that, with respect to Expression (4.3), here the
resulting set-point filter is of first order because the derivative action is applied
to the process variable instead of to the control error as in Expression (4.2)
(the control scheme is indeed equivalent).
The variable set-point weighting is actually provided by switching among three
constant values at selected time instants during the transient response. The
rationale of this method is to use a (relatively) high value of the weight at
the beginning of the transient response in order to speed up the response.
Then, the weight is lowered to avoid the overshoot and eventually it is raised
again to eliminate the undershoot. Note that it has been found by many
simulations that the use of three constant values of the set-point weight (i.e.,
of two switching times) is sufficient to obtain satisfactory results by employing
a simple tuning rule for the overall controller. Actually, good results cannot
be achieved in general with just one switching instant and the use of more
than two switching instants does not provide a significant improvement.
An automatic tuning procedure has been devised for the overall control scheme
(Hang and Cao, 1996). First, a relay-feedback experiment is performed (see
Chapter 7). From this experiment, the ultimate gain Ku and the ultimate
period Tu are estimated. Then, by assuming that the process is described by
a second-order-plus-dead-time transfer function with coincident poles, i.e., by
the transfer function

P (s) =
K

(Ts + 1)2
e−Ls, (4.5)

the time constant T and the dead time L are calculated as

T =
Tu

2π

√
KuK − 1 (4.6)

and

L =
Tu

2π

(
π − 2 arctan

2πT

Tu

)
=

Tu

2π

(
π − 2 arctan(

√
KuK − 1)

)
. (4.7)
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It is worth noting that the process gain K has to be known in advance but this
is not a serious drawback as it can be determined by considering steady-state
values of the control variable and of the process variable.
Then, the apparent dead time L̂ of the process is determined as

L̂ = L + 0.28T (4.8)

and the major time constant T̂ is determined as

T̂ = 2.72T. (4.9)

At this point, by considering Expressions (4.7)–(4.9), the normalised dead
time Θ of the process can be calculated as

Θ =
L̂

T̂
=

π − 2 arctan(
√

KuK − 1)
2.72

√
KuK − 1

+ 0.1. (4.10)

The PID parameters are then determined by applying the following refined
Ziegler–Nichols tuning rule:

Kp = 0.6Ku, (4.11)

Ti = (−0.22Θ + 0.53)Tu, (4.12)

Td =
Ti

4
. (4.13)

Suitable values for the set-point weight and for the switching time instants are
found empirically by means of a large number of simulations. Denote by β1

the first set-point weight value (to be applied before the first switching time
instant), by βs the second weight value (to be applied between the first and
the second switching time instant) and by βm its final value (to be applied
after the second switching time instant). They are determined as:

β1 = 1, (4.14)

βs = 0.2, (4.15)

βm = 0.4Θ2 − 0.05Θ + 0.58. (4.16)

The switching time instants are determined based on the current control error.
In particular, denoting as e0 the control error at the beginning of the transient,
the first change of the set-point weight value is applied when the control error
is

es = 0.85e0, (4.17)

while the second change is performed when the control error is

em = (−2.77Θ2 + 3.11Θ − 0.25)e0. (4.18)
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4.3.2 Simulation Results

In order to verify the effectiveness of the variable set-point weighting tech-
nique, the following processes are considered:

P1(s) =
1

(1 + sT )2
e−sL; T = 1, 10; L = 0.1, 0.4, 0.8; (4.19)

P2(s) =
1

(1 + s)3
; (4.20)

P3(s) =
1

(1 + s)(1 + 0.5s)(1 + 0.25s)(1 + 0.125s)
e−sL; L = 0, 0.1; (4.21)

P4(s) =
(1 − 0.5s)
(1 + s)3

. (4.22)

For each process, the automatic tuning method has been applied. The result-
ing PID parameters are shown in Table 4.1. Note that no saturation limits
have been considered in order to avoid biassing the results. As illustrative
examples, the resulting set-point step responses for some of the processes
considered are plotted in Figures 4.5–4.9. The results obtained are compared
with that obtained by considering the case of no set-point weighting, (i.e.,
with β = 1) and with a constant set-point weight. In this latter case, its value
β∗ has been determined in order to minimise the integrated absolute error,
defined as

IAE =
∫ ∞

0

|r(t) − y(t)|dt. (4.23)

It can be seen that the use of a variable set-point weighting provides a smaller
overshoot, with respect to the case of no set-point weighting, without impair-
ing significantly the rise time (note again that the process variable is actually

Table 4.1. PID parameters for the variable set-point weighting technique

Process Kp Ti Td

P1(s), T = 1, L = 0.1 10.84 0.76 0.19
P1(s), T = 1, L = 0.4 3.21 1.40 0.35
P1(s), T = 1, L = 0.8 1.76 1.88 0.47
P1(s), T = 10, L = 0.1 91.4 2.68 0.67
P1(s), T = 10, L = 0.4 26.8 4.85 1.21
P1(s), T = 10, L = 0.8 13.5 6.83 1.71
P2(s) 4.41 1.82 0.46
P3(s), L = 0 3.72 1.10 0.28
P3(s), L = 0.1 2.88 1.24 0.31
P4(s) 1.78 2.41 0.60
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Fig. 4.5. Process and control variable for P1(s) with T = 1 and L = 0.8. Solid line:
variable set-point weighting; dashed line: no set-point weighting; dotted line: fixed
set-point weight β = β∗ = 0.6.

the same in the two cases at the beginning of the transient response, since for
the variable set-point weighting technique it is β = 1 until the reduction of
the control error is of 15%).
In order to understand better the significance of the methodology, the result-
ing filtered set-point for process P2(s) and P4(s) for the cases again of variable
set-point weighting, of no set-point weighting and of set-point weighting with
β = β∗ are shown in Figures 4.10 and 4.11 respectively.
It appears that the set-point is suitably shaped in order to provide a fast
response with a small overshoot at the same time. Indeed, at the beginning of
the transient response the set-point signal is not filtered so that a fast response
is achieved. Then, the set-point is abruptly lowered so that the response is
significantly damped. Finally, the set-point is filtered as in the case of a fixed
set-point weighting.
It is worth noting at this point that the tuning rule provided for the PID
control might be to aggressive in practical cases. Indeed, oscillatory responses
result for experiments made with the laboratory setups presented in Sections
A.1 and A.2 (note that the dynamics in both cases is actually nonlinear).
Thus, a detuning of the controller should be considered in general.
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Fig. 4.6. Process and control variable for P1(s) with T = 10 and L = 0.1. Solid
line: variable set-point weighting; dashed line: no set-point weighting; dotted line:
fixed set-point weight β = β∗ = 0.3.
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Fig. 4.7. Process and control variable for P2(s). Solid line: variable set-point
weighting; dashed line: no set-point weighting; dotted line: fixed set-point weight
β = β∗ = 0.5.
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Fig. 4.8. Process and control variable for P3(s) with L = 0.1. Solid line: variable
set-point weighting; dashed line: no set-point weighting; dotted line: fixed set-point
weight β = β∗ = 0.55.
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Fig. 4.9. Process and control variable for P4(s). Solid line: variable set-point
weighting; dashed line: no set-point weighting; dotted line: fixed set-point weight
β = β∗ = 0.6.
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Fig. 4.10. Filtered set-point for P2(s). Solid line: variable set-point weighting;
dashed line: no set-point weighting; dotted line: fixed set-point weight β = β∗ = 0.5.
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Fig. 4.11. Filtered set-point for P4(s). Solid line: variable set-point weighting;
dashed line: no set-point weighting; dotted line: fixed set-point weight β = β∗ = 0.6.
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4.4 Fuzzy Set-point Weighting

4.4.1 Methodology

Fuzzy logic has been successfully applied widely in the control field in order
to exploit a linguistic model of the process to be controlled (usually given by
the operator) (Tzafestas, 1994). For an excellent introduction to fuzzy control
see, for example, (Driankov et al., 1993).
The use of a fuzzy inference system can be adopted to determine the value of
the set-point weight during the transient response in order to decrease the rise
time and at the same to reduce the overshoot (and therefore to decrease the
settling time as well) (Visioli, 1999). Consider the PID control law (4.1), where
in this case the filter to make the corresponding transfer function proper is
applied to the overall control law (see (1.23)). Then, a fuzzy inference system
is adopted to determine the value of the weight β(t) depending on the current
value of the system error e(t) and its time derivative ė(t) (denoted equivalently
by ∆e if the digital implementation is considered). The idea, put succinctly,
is simply that β has to be increased when the convergence of the process
output y(t) to r(t) has to be speeded up, and decreased when the divergence
trend of y(t) from r(t) has to be slowed down. For the sake of simplicity, the
methodology is implemented in such a way that the output f(t) of the fuzzy
module is added to a constant parameter w, resulting in the coefficient β(t)
that multiplies the set-point. The overall control scheme is shown in Figure
4.12.
The two inputs of the fuzzy inference system, the control error e and its
derivative ė, are scaled by two coefficients, Kin1 and Kin2 respectively, in order
to match the range [−1, 1] on which the membership functions are defined.
Five triangular membership functions (see Figure 4.13) are defined for each
input, while nine triangular membership functions (see Figure 4.14) over the
range [−1, 1] are defined for the output that is scaled by a coefficient Kout.
The rule matrix (see Figure 4.15) is based on the Macvicar–Whelan matrix
(Macvicar-Whelan, 1976). The meaning of the linguistic variables is explained
in Table 4.2.

yP(s)
Ti s

pK

KpT

1+ sfT
1

d s

pK

r

dt
d

wFIS

*

Fig. 4.12. Overall control scheme for the fuzzy set-point weighting methodology
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Fig. 4.13. Membership functions for the inputs of the fuzzy inference system
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Fig. 4.14. Membership functions for the output of the fuzzy inference system

4.4.2 Tuning Procedure

The fuzzy set-point weighting technique involves the tuning of many parame-
ters, namely, the four PID parameters Kp, Ti, Td and the filter time constant
Tf , the three scaling coefficients of the fuzzy inference system Kin1, Kin2 and
Kout, and the basic set-point weight value w. Further, the peak values of the
membership functions can be modified, as well as the rules, in order to im-
prove the performance.
It is suggested that the PID parameters are selected by adopting the Ziegler–
Nichols tuning rules based on the step response, in order to obtain a satisfac-
tory load disturbance rejection performance (the filter time constant can be
selected so that the filter dynamics is negligible). Then, the fuzzy inference
system parameters (including the basic set-point weight w) can be tuned by
adopting the typical procedure for fuzzy controllers (Zheng, 1992). In partic-
ular, at the beginning the value of Kin1 can simply be chosen as the inverse
of the amplitude of the step of the set-point. For the other parameters, a
practical procedure is to set w = 1 and then keep increasing the value of Kout

(starting from Kout = 0), accordingly modifying the value of Kin2 in order
to normalise the input ė, as long as the performance improves. Then, this
procedure can be iterated by decreasing the value of w until no better results
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Fig. 4.15. Table of the rules of the fuzzy inference system

Table 4.2. Meaning of the linguistic variables in the fuzzy inference system of the
fuzzy set-point weighting methodology

NVB Negative Very Big
NB Negative Big
NM Negative Medium
NS Negative Small
Z Zero
PS Positive Small
PM Positive Medium
PB Positive Big

PVB Positive Very Big

are achieved. At the end, the peak values of the membership functions have to
be tuned, especially to limit oscillations of the system output, increasing the
action of the fuzzy module when the output of the system is close to the set-
point but its derivative is still high. Finally, the rules may also be modified to
improve the response, although often in practical cases this is not necessary.
Note that this procedure can be automated (Visioli, 2000), although it can
be very time-consuming. An alternative effective method for the tuning of
the fuzzy inference system is by using genetic algorithms (Mitchell, 1998),
which have been successfully adopted in the optimisation of fuzzy controllers
(see for example (Homaifar and McCormick, 1995)). The idea is to search
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Fig. 4.16. Example of a vertex translation for the two inputs of the fuzzy inference
system

the optimal values of the parameters of the fuzzy module with respect to a
determined objective function. In the case of the fuzzification of the set-point
weight, having fixed the value of Kin1 equal to the inverse of the amplitude of
the step of the set-point, the values of Kin2, Kout, w and the position of the
membership functions are searched in order to minimise the value of the inte-
grated absolute error (4.23). Specifically, the optimal position of all the peaks
of the membership functions is searched, although the extreme and the central
ones are kept fixed, for the sake of simplicity. The vertexes of the bases are
accordingly translated, as shown in Figure 4.16. In order to limit the search
space, the symmetry between the membership functions around the zero is
imposed, both for the two inputs and the output. The procedure consists of
evaluating a series of step responses in order to permit to the genetic algo-
rithm to converge to the optimal solution (in a stochastic sense). Note that,
if a model of process is available, this can be done off-line with the use of
a proper simulation environment. Note also that by choosing other objective
functions, different design specifications can be satisfied; for example, a step
response with zero overshoot can be obtained.

4.4.3 Simulation Results

Simulation results are provided in order to understand better the fuzzy set-
point weighting technique and to evaluate its effectiveness. As for the variable
set-point weighting methodology, saturation limits on the control variable have
not been considered. First, the following two processes are considered:

Pa(s) =
1

s2 + 2ξs + 1
; ξ = 0.2, 0.8; (4.24)

Pb(s) =
1

s(1 + s)
. (4.25)

It is evident that by applying an analytical design method to Pa(s) an arbi-
trary fast response can be achieved in principle. Thus, the application of the
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fuzzy set-point weighting technique in this case is mainly done to verify its
potentiality to fully recover the set-point following performance with the PID
parameters tuned for load disturbance rejection purpose (here it is Kp = 3.34,
Ti = 0.95, Td = 0.24 for the case where ξ = 0.2 and Kp = 9.01, Ti = 0.80,
Td = 0.20 for the case where ξ = 0.8). The result obtained after having ap-
plied the genetic-based tuning procedure is plotted in Figure 4.17 for the case
ξ = 0.2. As in Section 4.3.2, it is compared with the case of no set-point weight
(i.e., β = 1) and with the case of the optimal (fixed) set-point weight β∗ that
minimises the integrated absolute error (4.23). Results for the case of ξ = 0.8
are very similar and are not shown for the sake of brevity. It can be seen that
the fuzzy set-point weighting technique provides a very fast response (with
virtually no overshoot) despite the unappropriate tuning of the PID parame-
ters for the set-point following point of view. Such a high performance is far
from what can be achieved with the use a fixed (although optimal) set-point
weight. Obviously, this is countered by a resulting high control effort (the
control variable in the case of a fixed set-point weight cannot be evaluated in
Figure 4.17 due to the scaling imposed by the control variable in the case of
the fuzzy set-point weighting).
The responses for the non self-regulating process Pb(s) are plotted in Figure
4.18 (Kp = 1.22, Ti = 1.96, Td = 0.49). The same considerations made before
apply also in this case.
Then, the fuzzy set-point weighting methodology has been applied to the
same processes (4.19)–(4.22) of Section 4.3.2. The adopted PID parameters
are shown in Table 4.3. Results related to some of the considered processes are
plotted in Figures 4.19–4.23. It can be seen that the fuzzy set-point weight-
ing method allows a decrease in many cases in both the rise time and the
overshoot at the same time (obviously, the control effort increases as well). In
order to understand better the methodology, the (varying) fuzzified set-point
weight for process P2(s) and process P4(s) is shown in Figure 4.24 and in
Figure 4.25 respectively. It appears that it is the significant variation of the
set-point weight that allows a high performance in the set-point following task
to be obtained.
Finally, it is worth noting that the fuzzy set-point weighting technique is
effective also if a different tuning rule is employed for the PID parameters
(Visioli, 1999) (see Section 4.4.4), in case a saturation limit for the control
variable is considered and in case a load disturbance occurs (Visioli, 2001b).
Further, in (Visioli, 2001b) it has also been shown that this method out-
performs other fuzzy logic based methods in which the PID parameters are
modified during the transient response.
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Fig. 4.17. Process variable and control variable for process Pa(s) with ξ = 0.2. Solid
line: fuzzy set-point weighting; dashed line: no set-point weighting; dotted line: fixed
set-point weight β = β∗ = 0.2.
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Fig. 4.18. Process variable and control variable for process Pb(s). Solid line: fuzzy
set-point weighting; dashed line: no set-point weighting; dotted line: fixed set-point
weight β = β∗ = 0.5.
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Table 4.3. PID parameters for the fuzzy set-point weighting technique

Process Kp Ti Td

P1(s), T = 1, L = 0.1 12.6 0.70 0.17
P1(s), T = 1, L = 0.4 3.39 1.46 0.36
P1(s), T = 1, L = 0.8 1.92 2.12 0.53
P1(s), T = 10, L = 0.1 120 2.24 0.56
P1(s), T = 10, L = 0.4 30 4.48 1.12
P1(s), T = 10, L = 0.8 15.6 6.24 1.56
P2(s) 4.80 1.80 0.45
P3(s), L = 0 4.05 1.10 0.27
P3(s), L = 0.1 3.03 1.30 0.32
P4(s) 1.92 2.64 0.66
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Fig. 4.19. Process variable and control variable for process P1(s) with T = 1 and
L = 0.8. Solid line: fuzzy set-point weighting; dashed line: no set-point weighting;
dotted line: fixed set-point weight β = β∗ = 0.7.
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Fig. 4.20. Process variable and control variable for process P1(s) with T = 10 and
L = 0.1. Solid line: fuzzy set-point weighting; dashed line: no set-point weighting;
dotted line: fixed set-point weight β = β∗ = 0.2.
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Fig. 4.21. Process variable and control variable for process P2(s). Solid line: fuzzy
set-point weighting; dashed line: no set-point weighting; dotted line: fixed set-point
weight β = β∗ = 0.45.
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Fig. 4.22. Process variable and control variable for process P3(s) with L = 0.1.
Solid line: fuzzy set-point weighting; dashed line: no set-point weighting; dotted
line: fixed set-point weight β = β∗ = 0.55.
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Fig. 4.23. Process variable and control variable for process P4(s). Solid line: fuzzy
set-point weighting; dashed line: no set-point weighting; dotted line: fixed set-point
weight β = β∗ = 0.7.
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Fig. 4.24. Fuzzified set-point weight for process P2(s)

0 5 10 15
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

time

(t
)

Fig. 4.25. Fuzzified set-point weight for process P4(s)



82 4 Set-point Weighting

4.4.4 Experimental Results

Level Control

The fuzzy set-point weighting methodology has been tested in a level con-
trol task with the tank apparatus described in Section A.1. The control task
requires an output transition from 1.5 V to 3 V. In this context, the adop-
tion of the Ziegler–Nichols tuning rule has not been possible because of the
resulting high value of the proportional gain (due to the low value of the nor-
malised dead time) which is not suitable with the present saturation limits of
the actuator. Thus, the following parameters have been selected after a few
trials: Kp = 0.008, Ti = 0.3, Td = 0.124, Tf = 0.1. It is worth stressing that,
although these are certainly not the most convenient parameters, they have
been selected in order to verify the capability of the fuzzy set-point weight-
ing methodology to recover the set-point following performance after a rough
tuning of the PID controller. The parameters of the fuzzy inference system
have been selected by applying a genetic algorithm after having estimated a
model of the process by evaluating an open-loop step response. The resulting
function f(e, ∆e) (which is actually implemented as a look-up table in the
PC-based controller) is plotted in Figure 4.26. It is worth stressing that in
this case a very high value of the basic set-point weight w results (indeed,
it is w = 31.3). This is due to the fact that the PID parameters adopted
provide a fairly sluggish response that has to be speeded up (note the low
value of the proportional gain Kp). Actually, this is a remarkable feature of
the methodology, since it turns out that it is capable of improving the perfor-
mance “independently” of the selected PID gains.
The process variable obtained by applying the fuzzy set-point weighting
methodology is shown in Figure 4.27. It is compared with the case of no
set-point weight and with the use of a fixed set-point weight β = 31.3 (note
that the selection of a different value for the fixed set-point weight does not
affect the results significantly). The corresponding control variables are plot-
ted in Figure 4.28. Finally, the variation of the set-point weight during the
transient response is shown in Figure 4.29. It can be seen that set-point fol-
lowing performance is much improved from every point of view (rise time,
overshoot, settling time) with the use of a fuzzy set-point weighting. Indeed,
this is achieved without increasing the control effort. Finally, it is worth not-
ing that the noisy set-point weight signal that results in the fuzzy set-point
weighting technique does not imply that the control signal is noisy as well
because of the use of the output-filtered form for the PID control which is
actually essential in this case.
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Fig. 4.26. Function implemented by the fuzzy inference scheme for the level control
experiment
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Fig. 4.27. Process variable for the level control experiment. Solid line: fuzzy set-
point weighting; dashed line: no set-point weighting; dotted line: fixed set-point
weight β = 31.3.
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Fig. 4.28. Control variable for the level control experiment. Solid line: fuzzy set-
point weighting; dashed line: no set-point weighting; dotted line: fixed set-point
weight β = 31.3.
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Fig. 4.29. Set-point weight for the level control experiment with fuzzy set-point
weighting
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Temperature Control

The effectiveness of the fuzzy set-point weighting technique is evaluated also
in the context of temperature control with the experimental setup described
in Section A.2. The control task is to perform an output transition from
the initial condition (determined by the room temperature) to a new steady-
state value of 2 V. As for the level control example, also in this case the
PID parameters determined by applying the Ziegler–Nichols rule have been
modified in order to cope with the saturation limits of the actuator. The
adopted PID parameters are Kp = 0.50, Ti = 300, Td = 14, Tf = 0.7. Then,
a genetic algorithm has been employed for the design of the fuzzy inference
mechanism (see the resulting function in Figure 4.30) and to determine the
basic set-point weight w = 6.46. Note that, as for the level control experiment,
w > 1. Similar considerations can be made in this case, by taking into account
the requirement that the response has to be speeded up.
The resulting process variable is plotted in Figure 4.31. It is compared with the
case of no set-point weighting and with the case of a fixed set-point weight β =
0.5 (note that the use of fixed set-point weight β = 6.46 results in an excessive
overshoot). The corresponding control variables are shown in Figure 4.32. As
expected, the fuzzy set-point weighting method causes a greater control effort
and a more noisy control signal. This is clearly explained by evaluating the
fuzzified weight signal plotted in Figure 4.33. In any case it is evident that the
use of a fuzzy set-point weighting allows to improve significantly the set-point
following performance achieved by the PID controller.

Fig. 4.30. Function implemented by the fuzzy inference scheme for the temperature
control experiment
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Fig. 4.31. Process variable for the level control experiment. Solid line: fuzzy set-
point weighting; dashed line: no set-point weighting; dotted line: fixed set-point
weight β = 0.5.
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Fig. 4.32. Control variable for the level control experiment. Solid line: fuzzy set-
point weighting; dashed line: no set-point weighting; dotted line: fixed set-point
weight β = 0.5.
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Fig. 4.33. Set-point weight for the level control experiment with fuzzy set-point
weighting

4.5 Discussion

The use of the different methods for the set-point weight is discussed here-
after. For the processes (4.19)–(4.22) considered previously in the simulation
results sections, a comparison between the different considered methods from
the point of view of the achieved overshoot, rise time, 5% settling time and
integrated absolute error is reported in Tables 4.4–4.7.
Clearly, the use of a fixed set-point weight is the simplest method to adopt
and actually allows in general to reduce the overshoot more than the other
methods (by paying the price of a further increased rise time). As already
mentioned, the variable set-point weighting technique allows the maintenance
of almost the same rise time of the case without set-point weight by reducing
the overshoot at the same time. It can be remarked that an automatic tuning
procedure is given so that the design extra effort required by the user is not
significant. However, it is not clear how to do this if the attained overshoot is
still excessive in a given application. Thus, the method is appropriate when
the overshoot limit is not of major concern.
The best performance is generally achieved by the fuzzy set-point weighting
methodology. This is done however at the expense of an increased complex-
ity of the overall controller (although the tuning of the PID controller can
be done with less effort since the fuzzified set-point weight allows to recover
in any case the set-point following performance) and of an increased control
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Table 4.4. Resulting overshoot [%] for the considered methodologies. VSW: vari-
able set-point weighting; RZN: refined Ziegler–Nichols tuning with no set-point
weighting; RZN-OSPW: refined Ziegler–Nichols tuning with optimal (fixed) set-
point weighting; FSW: fuzzy set-point weighting; ZN: Ziegler–Nichols tuning with
no set-point weighting; ZN-OSPW: Ziegler–Nichols tuning with optimal (fixed) set-
point weighting.

Process VSW RZN RZN-OSPW FSW ZN ZN-OSPW

P1(s), T = 1, L = 0.1 17.0 62.2 19.2 9.32 73.8 21.5
P1(s), T = 1, L = 0.4 19.7 49.2 15.7 5.64 49.3 14.4
P1(s), T = 1, L = 0.8 20.6 38.2 13.5 10.6 33.3 12.1
P1(s), T = 10, L = 0.1 14.1 71.5 18.3 10.6 80.4 22.6
P1(s), T = 10, L = 0.4 17.4 69.6 18.4 2.77 75.7 28.0
P1(s), T = 10, L = 0.8 17.3 64.4 18.1 2.65 72.6 21.3
P2(s) 11.1 50.4 16.3 2.26 53.3 15.3
P3(s), L = 0 12.9 48.1 14.8 5.86 51.0 16.2
P3(s), L = 0.1 16.6 46.3 16.0 5.94 44.1 13.1
P4(s) 18.9 37.5 12.8 8.50 32.4 12.1

Table 4.5. Resulting rise time for the considered methodologies. VSW: variable set-
point weighting; RZN: refined Ziegler–Nichols tuning with no set-point weighting;
RZN-OSPW: refined Ziegler–Nichols tuning with optimal (fixed) set-point weight-
ing; FSW: fuzzy set-point weighting; ZN: Ziegler–Nichols tuning with no set-point
weighting; ZN-OSPW: Ziegler–Nichols tuning with optimal (fixed) set-point weight-
ing.

Process VSW RZN RZN-OSPW FSW ZN ZN-OSPW

P1(s), T = 1, L = 0.1 0.42 0.34 0.56 0.21 0.31 0.53
P1(s), T = 1, L = 0.4 0.71 0.68 1.01 0.68 0.66 1.00
P1(s), T = 1, L = 0.8 1.03 1.03 1.41 1.08 0.99 1.28
P1(s), T = 10, L = 0.1 1.69 1.16 2.03 0.21 0.99 1.72
P1(s), T = 10, L = 0.4 2.83 2.12 3.72 0.92 1.99 3.11
P1(s), T = 10, L = 0.8 3.81 3.04 5.16 1.77 2.76 4.77
P2(s) 1.23 0.98 1.39 0.41 0.95 1.40
P3(s), L = 0 0.69 0.59 0.85 0.52 0.57 0.81
P3(s), L = 0.1 0.72 0.66 0.91 0.69 0.66 0.92
P4(s) 1.31 1.28 1.78 1.20 1.25 1.64

effort. Note that, however, the trade-off between aggressiveness and control
effort can be easily handled by modifying the value of the parameter Kout. In
fact, the presence of parameter Kout is useful for excluding the fuzzification of
the set-point weight from the overall control scheme if the operator prefers to
avoid its use (for example when the normalised dead time of the process has
a high value). Actually, by setting Kout = 0, a classical control scheme with a
fixed set-point weighting results. Note that this solution naturally arises from



4.5 Discussion 89

Table 4.6. Resulting 5% settling time for the considered methodologies. VSW:
variable set-point weighting; RZN: refined Ziegler–Nichols tuning with no set-point
weighting; RZN-OSPW: refined Ziegler–Nichols tuning with optimal (fixed) set-
point weighting; FSW: fuzzy set-point weighting; ZN: Ziegler–Nichols tuning with
no set-point weighting; ZN-OSPW: Ziegler–Nichols tuning with optimal (fixed) set-
point weighting.

Process VSW RZN RZN-OSPW FSW ZN ZN-OSPW

P1(s), T = 1, L = 0.1 2.46 3.52 2.69 0.99 4.19 3.37
P1(s), T = 1, L = 0.4 2.97 4.74 3.44 1.85 4.62 3.34
P1(s), T = 1, L = 0.8 5.77 4.98 4.76 5.02 4.67 4.23
P1(s), T = 10, L = 0.1 12.0 18.2 12.2 1.03 21.9 16.5
P1(s), T = 10, L = 0.4 16.7 28.1 22.3 1.75 32.7 27.1
P1(s), T = 10, L = 0.8 22.2 31.7 24.3 3.40 37.8 30.3
P2(s) 5.04 7.73 5.93 1.65 7.77 5.93
P3(s), L = 0 2.20 3.56 2.55 2.66 3.55 3.43
P3(s), L = 0.1 3.40 3.95 2.91 3.64 3.66 2.80
P4(s) 7.62 7.61 5.91 5.26 5.95 5.44

Table 4.7. Resulting integrated absolute error for the considered methodologies.
VSW: variable set-point weighting; RZN: refined Ziegler–Nichols tuning with no set-
point weighting; RZN-OSPW: refined Ziegler–Nichols tuning with optimal (fixed)
set-point weighting; FSW: fuzzy set-point weighting; ZN: Ziegler–Nichols tuning
with no set-point weighting; ZN-OSPW: Ziegler–Nichols tuning with optimal (fixed)
set-point weighting.

Process VSW RZN RZN-OSPW FSW ZN ZN-OSPW

P1(s), T = 1, L = 0.1 0.58 1.06 0.58 0.34 1.26 0.87
P1(s), T = 1, L = 0.4 1.23 1.77 1.12 1.08 1.74 1.48
P1(s), T = 1, L = 0.8 1.99 2.43 1.76 1.95 2.26 2.08
P1(s), T = 10, L = 0.1 1.96 4.62 2.18 0.34 5.46 3.31
P1(s), T = 10, L = 0.4 3.77 7.86 3.80 1.27 8.79 5.95
P1(s), T = 10, L = 0.8 5.20 9.87 5.11 2.49 11.0 7.65
P2(s) 1.19 2.22 1.36 0.51 2.27 1.84
P3(s), L = 0 0.79 1.30 0.82 0.71 1.32 1.11
P3(s), L = 0.1 1.02 1.50 1.00 0.96 1.44 1.26
P4(s) 2.49 3.08 2.21 2.20 2.83 2.61

the genetic tuning procedure just with the increasing of the normalised dead
time of the process.
It is worth stressing at this point that techniques based on the modification of
the set-point are already available in industrial single-station controllers. For
example, in some Yokogawa temperature controllers, the so-called Fuzzy Over-
shoot Suppressor is implemented. It consists of lowering the set-point value
by means of a fuzzy inference system, namely of substituting the set-point
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signal with a sub-set-point signal during the transient when the occurrence
of an excessive overshoot is estimated. This fact is depicted in Figure 4.34.
The performance obtained by this method have been compared with those ob-
tained by the variable set-point weighting method (Hang and Cao, 1996) and
by the fuzzy set-point weighting method (Visioli and Veronesi, 1999). Results
demonstrate that the varying just the set-point weight instead of the set-point
signal is preferable, although it has to be highlighted that a fair comparison
is difficult to perform since the exact algorithm of the industrial controller is
not available.
Finally, it has to be noted that the algorithms previously described differ
from the classical gain scheduling approach. Actually, the purpose of a gain
scheduling is to address process nonlinearities by adopting different sets of
(fixed) PID parameters in different operating regions. Conversely, the use of
a time-varying set-point weight aims at improving the transient response for
a process with linear dynamics. Further, in the gain scheduling approach the
set of PID parameters to be adopted depends of the absolute value of an
auxiliary variable (for example the set-point or the process variable) that is
representative of the current operating region. On the contrary, in the de-
scribed techniques the current value of the set-point weight is determined by
the current control error (and its first time derivative) (Hang and Cao, 1996).

process variable

sub set point

set point

t

Fig. 4.34. Sketch of a result of the implementation of the Fuzzy Overshoot Sup-
pressor
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4.6 Conclusions

In this chapter the role of the set-point weighting in the PID control law has
been underlined and it has been shown how it can be effectively adopted in
order to decouple the problem of providing good performance at the same
time both in the set-point following and in the load disturbance rejection
task. For processes with small normalised dead time, the adoption of a time
varying (control error dependent) set-point weight can represent a valid choice
to avoid a large overshoot without increasing the rise time. In this context, two
methodologies, namely the variable set-point weighting and the fuzzy set-point
weighting technique, have been thoroughly analysed in order to provide a clear
characterisation of them and to understand their applicability in practical
situations. It has been shown that the use of such techniques indeed represents
a valuable solution for the implementation of a high-performance controller
by retaining at the same time the overall ease of use of a PID controller.



5

Use of a Feedforward Action

5.1 Introduction

The main purpose of using feedback is to compensate for external disturbances
and for model uncertainties. Actually, when a sufficiently accurate model of
the process is available (and the process dynamics does not change signifi-
cantly during the process operations), control performance can be improved
in general by conveniently employing an additional feedforward (open-loop)
control law. Different methodologies for the design and the implementation
of a feedforward control law, to be adopted in conjunction with the feedback
action provided by a PID controller, are described in this chapter. It is shown
how the problem can be approached from different points of view. In par-
ticular, regarding the set-point following task, two kinds of approaches are
presented: the design of a causal feedforward action and of a noncausal feed-
forward action. In the first case a nonlinear control law is described and its
advantages with respect to the standard methodology are outlined. In the sec-
ond case, to be employed when desired process output transitions are known
in advance, strategies based on input-output inversion are explained both in
the continuous-time and in the discrete-time framework. Finally, a brief review
of the use of feedforward for disturbance compensation is also provided.

5.2 Linear Causal Feedforward Action

The standard methodology for the implementation of a feedforward action
for the improvement of set-point following task is that shown in Figure 5.1
(note that this scheme can be made equivalent to the one of Figure 1.11 by a
proper modification of the block diagram), where M(s) is a reference model
that gives the desired response of a set-point change and G(s) is chosen as

G(s) =
M(s)

P̃ (s)
. (5.1)
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M(s)

G(s)

C(s) P(s)r yu

uff
y
f

Fig. 5.1. Block diagram for the standard implementation of feedforward action for
set-point following task

where P̃ (s) is the minimum-phase part of the process transfer function P (s).
Note that this is actually a general scheme and can be implemented with any
feedback controller C, although the following analysis will assume the adop-
tion of a PID controller. Obviously, the effectiveness of feedforward control
heavily depends on the accuracy of the estimated process model (see the re-
markable result presented in (Devasia, 2002)). In any case, even if a perfect
model is available, the design of M(s) is a crucial issue, as it represents the
desired performance. It has to contain the nonminimum-phase (i.e., the non
invertible) part of P (s) and also it should take into account actuator limits.
The following example illustrates this issue. Consider the process

P (s) =
1

10s + 1
e−5s, (5.2)

and an ideal output-filtered PID controller (1.23) with Kp = 2.4, Ti = 10,
Td = 2.5 and Tf = 0.1. Then, the transfer function M(s) is designed as

M(s) =
1

2s + 1
e−5s, (5.3)

in order to speed up the closed-loop control system response with respect to
the open-loop system. Thus, the transfer function G(s) results to be

G(s) =
10s + 1
2s + 1

. (5.4)

If no saturation limits are considered, the unit set-point step response is plot-
ted in Figure 5.2. Note that the output of the PID controller, i.e., the control
error, is always zero. Conversely, if a saturation limit usat = 2 is applied to the
control variable, the result is that shown in Figure 5.3 (note the different time
scaling). It can be seen that the feedforward action is not exploited due to the
saturation limits and a (possibly unexpected) worse performance result (note
that there is no integrator windup effect). Indeed, the design of the reference
model has to take into account the saturation limits of the actuator, since a
too fast response cannot be imposed. In other words, even if a nonminimum-
phase dynamics is absent, the performance achievable is obviously limited by
the physical constraints of the actuator and the overall design cannot leave
this aspect out of consideration.
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Fig. 5.2. Example of use of the standard implementation of feedforward action with
no saturation limits
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Fig. 5.3. Example of use of the standard implementation of feedforward action with
saturation limits
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5.3 Nonlinear Causal Feedforward Action

A significant improvement in the set-point following performances can be
obtained by employing a nonlinear feedforward action, as shown in (Wallen,
2000; Wallen and Åström, 2002), where a technique inspired by the bang-
bang control strategy (Lewis, 1996) is devised to achieve a fast response to
set-point changes. With the same aim of fully exploiting the capabilities of
the actuator, namely, in order to take into account the actuator nonlinearity
(without impairing the ease of use of the overall control system), the following
methodology has been proposed in (Visioli, 2004).
Assume that it is required to design a control scheme based on a PID controller
plus a feedforward term aiming at achieving a transition of the process output
y from the value y0 to the value y1 in a predefined time interval of duration τ .
In the following, for the sake of clarity and without loss of generality, it will
be assumed y0 = 0 and y1 > 0.
The devised PID plus feedforward control scheme is shown in Figure 5.4, and
implements the following design technique. First, the process is described by
a FOPDT model, i.e.:

P (s) =
K

Ts + 1
e−Ls. (5.5)

Based on this model, the output uff of the feedforward block FF is defined
as follows:

uff(t) =

⎧⎨
⎩

ūff if t < τ
y1

K
if t ≥ τ

(5.6)

where the value of ūff is determined, after trivial calculations, in such a way
that the process output y (which is necessarily zero until time t = L) is y1 at
time t = τ + L. It produces the result:

ūff =
y1/K

1 − e−τ/T
. (5.7)

In this way, if the process is described perfectly by Model (5.5), an output
transition in the time interval [L, τ + L] occurs. Then, at time t = τ + L the
output settles at value y1 thanks to the constant value assumed by uff (t) for
t ≥ τ .

C(s) P(s)
yu

uff
y
f

FF

F(s)
y
1r

Fig. 5.4. Block diagram of the PID plus nonlinear feedforward action control scheme
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Then, a suitable reference signal yf has to be applied to the closed-loop sys-
tem. It is desired that yf be equal to the desired process output that would
be obtained in the case where the process is modelled perfectly by Expression
(5.5). Thus, the step reference signal r of amplitude y1 has to be filtered by
the system

F (s) =

Kūff

y1

Ts + 1
e−Ls (5.8)

and then saturated at the level y1.
It is worth stressing at this point that this method exploits the fact that a
process output transition is required instead of tracking a general reference
signal. In the latter case the typical control scheme of Figure 5.1 has to be
adopted. The presence of many set-point changes can be instead easily handled
by the PID plus nonlinear feedforward control system. Indeed, in case a new
value of the set-point is selected during a previously determined transient
response, it is sufficient to determine the feedforward action for the new value
and to sum it to the one that is currently applied. Analogously, the reference
signal determined for the latest set-point change has to be summed to the one
related to the previous one.
The overall control scheme design involves the selection of the transition time
τ and of the PID parameters. The choice of a sensible value of τ can be made
by the user either directly or through a (possibly) more intuitive reasoning.
For example, the user might select a ratio between the bandwidth of the open-
loop system and that of the closed-loop one, from which the value of τ can be
determined easily. Obviously, decreasing the value of τ means that the value of
ūff (and therefore of the overall manipulated variable) increases, and too low a
value of τ might imply that the determined control variable cannot be applied
due to the saturation of the actuator. Thus, alternatively, the operator might
first select the value of ūff depending on the desired control effort (defined
typically as a percentage of the maximum limit of the manipulated variable)
and determine consequently the value of τ . In this way the potentiality of
the actuator can be fully exploited and the problems associated with the use
of the standard control scheme of Figure 5.1 are avoided. In any case, the
design parameter τ has a clear physical meaning, as it handles the trade-
off between performance, robustness and control activity (Kristiansson and
Lennartson, 2001; Morari and Zafiriou, 1989). Indeed, it has the same role
of the time constant of the reference model M(s) in the classic technique.
It can be therefore exploited to satisfy the specific requirements of a given
application.
The tuning of the PID controller should take into account the robustness
issue, since the feedforward action is based on a simple FOPDT model of
the plant and the compensation of the (unavoidable) modelling errors is left
to the feedback control law. To this respect, it is very useful to consider the
analysis made in (Wallen, 2000), where it is shown that the deviations due to
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the modelling errors between the desired and the actual output can be treated
as the effect of a load disturbance d = Gduff where

Gd(s) =
P (s) − F (s)

P (s)
(1 + P (s)C(s)) . (5.9)

Thus, by considering that the process output results to be the superposition
of the effects of the feedforward action and of the load disturbances (i.e.,
of true load disturbances and the “fictitious” one d due to the modelling
errors) and by considering also that in the nominal case the set-point following
performances are determined only by the feedforward action, it is sensible to
tune the PID controller by taking into account its load disturbance rejection
performances.

5.3.1 Simulation Results

The following simulation results are given in order to understand better the
significance of the technique presented and to compare it with the classic
method of Section 5.2. In all the considered cases it is assumed that y1 = 1,
namely, a unit step is applied to the set-point signal at time t = 0 (starting
from null initial conditions). An ideal output-filtered PID controller (1.23)
is adopted and no actuator saturation limits are considered (this case is ad-
dressed in Section 5.3.2 where experimental results are shown).
As a first example, consider the process

P1(s) =
1

s + 1
e−0.5s, (5.10)

and a PID controller with Kp = 2.4, Ti = 1 and Td = 0.25 (Tf = 0.01).
The selected transition time is τ = 0.5 and therefore, by applying Equation
(5.6), it results ūff = 2.54, i.e., the feedforward signal uff (t) is equal to 2.54
for 0 ≤ t < 0.5 and equal to one for t ≥ 0.5 s. This feedforward signal and
the obtained process output are plotted in Figure 5.5 (solid line). Note that
in this case, being the process modelled perfectly, we have that the output
of the PID controller is zero for t ≥ 0 s, i.e., the reference signal yf for the
closed-loop system is equal to the obtained process output.
For the sake of comparison, the classic control scheme of Figure 5.1 has been
applied to the same process (and the same PID controller). By choosing

M(s) =
1

0.5s + 1
e−0.5s

we obtain (see (5.1))

G(s) =
s + 1

0.5s + 1
The resulting feedforward signal and process output are also shown in Figure
5.5 (dashed line). Also in this case the output of the PID controller is zero for
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t ≥ 0 s as there are no model uncertainties.
It appears that, with the new approach, the settling time has been shortened
about five times, as is obvious because in the classic scheme 0.5 is the time
constant of the overall system (which is of first order), instead of the actual
transition time. In order to evaluate better the significance of the results, the
conventional control scheme has been implemented by setting the value of the
time constant of the reference model to τ/5, i.e.:

M(s) =
1

0.1s + 1
e−0.5s

and, consequently,

G(s) =
s + 1

0.1s + 1

Results are again shown in Figure 5.5 (dash-dot line). It appears that a value of
the settling time comparable with the one obtained with the new methodology
has been achieved in this case by much increasing the control effort.
Evidently, the much better performance obtained with the adopted nonlinear
feedforward action (despite no extra design effort required from the user) is
due to the fact that the control signal is kept at a constant level for the time
necessary to achieve the desired process output transition and this cannot be
obtained with a linear feedforward action.
As a second example, consider the process

P2(s) =
1

(s + 1)4
e−0.5s. (5.11)

By applying the area method (see Chapter 7), a FOPDT model (5.5) of the
process is estimated, resulting in K = 1, T = 2.12, and L = 2.38. Based on
this model, the PID parameters can be selected as Kp = 1.07, Ti = 4.76,
Td = 1.19 and Tf = 0.01. By fixing τ = 2, the resulting value of the constant
feedforward action (see (5.6)) is ūff = 1.637. Results related to the nonlinear
feedforward approach are reported in Figure 5.6. As for the process P1(s), a
comparison with the standard approach has been performed. Thus,

M(s) =
1

0.4s + 1
e−2.38s

and, consequently,

G(s) =
2.12s + 1
0.4s + 1

Results related to this case are shown in Figure 5.7.
As for process P1(s) (5.10), it turns out that the approach based on the use of a
nonlinear feedforward action provides a performance similar to that obtained
with the classic one but with a much less control effort. The same kind of
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experiment is repeated with τ = 10 for the PID plus nonlinear feedforward
scheme (ūff = 1.01) and it is compared with the classic linear approach where

M(s) =
1

2s + 1
e−2.38s.

Results are shown in Figures 5.8 and 5.9 respectively.
The role played by parameter τ of the nonlinear feedforward control method
and by the selected time constant of the reference model in the linear feedfor-
ward control method in handling the trade-off between performance, robust-
ness and control activity becomes apparent.
From the presented results, it is evident that the robustness of the two ap-
proaches with respect to modelling uncertainties is basically the same. Fur-
ther, it can be seen that, as expected, the two approaches result in a more
and more similar performance as the desired process output transition time
is increased.
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Fig. 5.5. Simulation results for the process P1(s). Solid line: PID plus nonlinear
feedforward action; dash-dot line: PID plus linear feedforward action with a FOPDT
reference model with a time constant of 0.5; dotted line: PID plus linear feedforward
action with a FOPDT reference model with a time constant of 0.1.
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Fig. 5.6. Process output, reference signal, manipulated variable and feedforward
signal with the PID plus nonlinear feedforward action scheme for process P2(s)
(τ = 2). Solid line: y(t) and u(t); dashed line: yf (t) and uff (t).
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Fig. 5.7. Process output, reference signal, manipulated variable and feedforward
signal with the classic linear feedforward action scheme for process P2(s) with a
FOPDT reference model with a time constant of 0.4. Solid line: y(t) and u(t); dashed
line: yf (t) and uff (t).
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Fig. 5.8. Process output, reference signal, manipulated variable and feedforward
signal with the PID plus nonlinear feedforward action scheme for process P2(s)
(τ = 10). Solid line: y(t) and u(t); dashed line: yf (t) and uff (t).
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Fig. 5.9. Process output, reference signal, manipulated variable and feedforward
signal with the classic linear feedforward action scheme for process P2(s) with a
FOPDT reference model with a time constant of 2. Solid line: y(t) and u(t); dashed
line: yf (t) and uff (t).
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5.3.2 Experimental Results

Level Control

The PID plus nonlinear feedforward control scheme has been tested in a level
control problem by means of the double-tank apparatus described in Section
A.1. In particular, a single tank has been considered and a transition from
the initial level y0 = 2 V to the final level y1 = 4 V has been required. By
taking into account that the maximum value of the manipulated variable is
umax = 5 V, the maximum absolute value for the feedforward signal uff(t)
(denoted uM

ff ) has been fixed to 4.8 V. This choice is justified by the need
of giving to the feedback PID controller the capability to compensate for the
model uncertainties. The FOPDT model of the tank in the operating range has
been estimated by applying the area method to an open-loop step response.
It results in

P (s) =
1.2

20s + 1
e−1.5s, (5.12)

i.e., it is K = 1.2, T = 20 s and L = 1.5 s. A PI controller is then tuned by
fixing Kp = 7.41 and Ti = 20. The transition time τ has then been determined
by considering the selected value of uM

ff . From Equation (5.6), it can be derived

τ = −T log

(
−y1 − y0

Kūff
+ 1

)
, (5.13)

where the value of ūff , by taking into account the initial output value, has
to be calculated as

ūff = uM
ff − y0

K
. (5.14)

By considering the values of the parameters, it results τ = 15.18 s. The non-
linear feedforward approach has been compared to the case of no feedforward
action and to the linear feedforward approach. In this latter case the reference
model has been selected as

M(s) =
1

τ

5
s + 1

e−1.5s, (5.15)

so that the feedforward block transfer function becomes

G(s) =
1

1.2
· 20s + 1
3.06s + 1

. (5.16)

The resulting process variable for the control systems considered is plotted
in Figure 5.10. The corresponding (PID plus feedforward) controller output
is reported in Figure 5.11. It appears that the resulting controller output
when no feedforward action is present and when a linear feedforward action
is employed is much greater than the actual saturation limit of the actuator
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Fig. 5.10. Process variable for the level control task. Solid line: PID plus nonlinear
feedforward action; dash-dot line: PID with no feedforward action; dotted line: PID
plus linear feedforward action.

0 5 10 15 20 25 30 35 40 45 50
2

4

6

8

10

12

14

16

time [s]

co
nt

ro
lle

r 
ou

tp
ut

 [
V

]

Fig. 5.11. Controller output for the level control task. Solid line: PID plus nonlinear
feedforward action; dash-dot line: PID with no feedforward action; dotted line: PID
plus linear feedforward action.
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in a significant time interval and therefore it is not exploited. Conversely,
the controller output for the case of the nonlinear feedforward action is, as
expected, about 4.8 V at the beginning of the transient (variations up to 5 V
are due to the model uncertainties). This implies that a slightly higher rise
time occurs but the overall performance is much more satisfactory (there is
no overshoot and the settling time is smaller).
Another experiment has been performed by considering the other tank present
in the equipment and by adding an artificial dead time of 10 s. In this case
the control requirement is to accomplish an output transition from y0 = 2 V
to y1 = 3 V. The estimated process model is

P (s) =
1.98

29s + 1
e−11s, (5.17)

and the PI controller parameters are selected as Kp = 1.2 and Ti = 33. By
applying a reasoning analogous to the previous case, the transition time is
chosen as τ = 6 s. Then, the model reference for the classic linear feedforward
approach is selected as

M(s) =
1

1.2s + 1
e−11s, (5.18)

so that the feedforward block transfer function results to be

G(s) =
1

1.98
· 29s + 1
1.2s + 1

. (5.19)

The resulting process variable and the corresponding process input (note that
the saturation limit is umax = 5 V) for the three considered control schemes
are reported in Figures 5.12 and 5.13 respectively.
From the presented experimental results, critical issues associated with the
classical feedforward design appear. In particular, in the presented cases, the
linear approach is not worthy to being applied with respect to the standard
PID control, since the decreasing of the rise time is paid by a larger overshoot
and by an increased amplitude of the manipulated variable. Conversely, the
nonlinear feedforward approach outperforms the other ones.
Actually, it is evident that a higher saturation level would be necessary for
the classical feedforward scheme in order to provide a performance similar to
that achieved by adopting the technique proposed in (Visioli, 2004), and this
highlights its main advantage, namely that the use of a nonlinear (piecewise
constant) feedforward action allows to obtain in general a low rise time and
a low overshoot in the set-point step response despite a less maximum value
of the control variable is required.
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Fig. 5.12. Process variable for the level control task with additional dead time. Solid
line: PID plus nonlinear feedforward action; dash-dot line: PID with no feedforward
action; dotted line: PID plus linear feedforward action.
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Fig. 5.13. Controller output for the level control task with additional dead time.
Solid line: PID plus nonlinear feedforward action; dash-dot line: PID with no feed-
forward action; dotted line: PID plus linear feedforward action.
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Fig. 5.14. Process variable for the temperature control task. Solid line: PID plus
nonlinear feedforward action; dash-dot line: PID with no feedforward action; dotted
line: PID plus linear feedforward action.

Temperature Control

The PID plus nonlinear feedforward control scheme has been tested also in a
temperature control problem by means of the experimental setup described
in Section A.2. A transition from the initial level y0 = 1 V to the final level
y1 = 2 V has been required. As in the level control case, by taking into
account that the maximum value of the manipulated variable is umax = 5 V,
the maximum absolute value for the feedforward signal uff(t) has been fixed
to uM

ff = 4.8 V. The FOPDT model of the oven in the operating range has
been estimated by applying the area method to an open-loop step response.
It becomes

P (s) =
1.33

1400s + 1
e−30s, (5.20)

i.e., it is K = 1.2, T = 1400 s and L = 30 s. A PID controller is then
tuned by fixing Kp = 2.0 and Ti = 300. The transition time τ has then been
determined by following the same reasoning as in the level control example.
It results τ = 287.7 s. Based on this result, the model reference for the classic
linear feedforward approach is selected as
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Fig. 5.15. Controller output for the temperature control task. Solid line: PID plus
nonlinear feedforward action; dash-dot line: PID with no feedforward action; dotted
line: PID plus linear feedforward action.

M(s) =
1

57.5s + 1
e−30s, (5.21)

so that the feedforward block transfer function becomes

G(s) =
1

1.33
· 1400s + 1

57.5s + 1
. (5.22)

The resulting process variable and the corresponding controller output (note
that the saturation limit is umax = 5 V) for the three control schemes consid-
ered are shown in Figures 5.14 and 5.15 respectively.
It appears that in this case the standard linear feedforward action provides
a better performance than pure PID control, but the nonlinear feedforward
action allows the significant decrease of the overshoot with respect to both of
them. Indeed, considerations similar to those made for the level control task
apply also in this case.
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5.4 Noncausal Feedforward Action: Continuous-time
Case

5.4.1 Generalities

In the previous sections, it has been shown that the set-point following per-
formance of a feedback control system can be significantly improved by the
application of a properly designed (causal) feedforward action. From a differ-
ent point of view, when the desired output trajectory is known in advance, a
feedforward action determined by means of a stable inversion technique can
be applied (Zou and Devasia, 1999). Roughly speaking, the approach consists
in selecting a desired output function that meets the control requirements
and then determining, by inverting the system dynamics, the input function
that causes that selected output signal. It is worth noting that the concept of
dynamic input-output inversion (Hunt et al., 1996; Devasia et al., 1996) has
been already proven to be effective in different areas of the automatic con-
trol field, such as motion control (Piazzi and Visioli, 2000; Perez and Deva-
sia, 2003), flight control (Hunt and Meyer, 1997), robust control (Piazzi and
Visioli, 2001c; Piazzi and Visioli, 2001a).
In the context of PID control, the input-output inversion technique can be
exploited to determine a suitable command signal to be applied to the closed-
loop control system, instead of the typical step signal, in order to achieve a
high performance (i.e., low rise time and low overshoot at the same time)
when the process output is required to assume a new value. Indeed, assume
that the process variable is required to achieve a steady-state value y1 starting
from a steady-state value y0. If a causal feedforward action is adopted, the
control scheme of Figure 1.11, which comprises the feedforward approaches
described until now, is based on the causal filtering of a step signal (of ampli-
tude y1− y0) by means of the system described by the transfer function F (s).
The resulting signal is then applied to the closed-loop system. Conversely, if an
inversion approach is exploited, the scheme shown in Figure 5.16 is employed.
In this case a step signal is not employed, but the knowledge in advance of
y1 is adopted by a command signal generator block to calculate a suitable
command signal r to be applied to the closed-loop PID control system.

C P
command

signal
generator

0y

1y
r y

Fig. 5.16. Control scheme based on input-output inversion
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5.4.2 Methodology

Modelling

The design methodology based on input-output inversion proposed in (Piazzi
and Visioli, 2006) is based on a theoretical framework that might appear to
be somewhat complicated. However, the theoretical development can be made
transparent to the user and therefore the use of the technique does not impair
the ease of use that is an essential requirement in the context of PID control.
The fundamental passages are describe hereafter in some detail in order to
understand better the underlying concepts of the overall methodology.
As a first step of the devised method, the process to be controlled (assumed
to be self-regulating) is modelled as a FOPDT transfer function, i.e.:

P (s; K, T, L) =
K

Ts + 1
e−Ls, (5.23)

but then, in order to have a rational transfer function, the dead-time term is
approximated by means of a second-order Padè approximation. In this way,
the approximated process transfer function results to be:

P̃ (s; K, T, L) =
K

Ts + 1
1 − Ls/6 + L2s2/12
1 + Ls/6 + L2s2/12

. (5.24)

Note that if the process is non self-regulating, it can be modelled as an
integrator-plus-dead-time (IPDT) transfer function, i.e.:

P̃ (s; K, L) =
K

s

1 − Ls/6 + L2s2/12
1 + Ls/6 + L2s2/12

. (5.25)

Then the methodology is basically the same for the FOPDT case and details
for this case are omitted hereafter (an example is presented in Section 5.4.3).

PID Controller Design

An output filtered PID controller in ideal form (1.23) is employed as a feedback
controller. For the sake of clarity, its transfer function is recalled here:

C(s; Kp, Ti, Td, Tf) = Kp

(
1 +

1
Tis

+ Tds

)
1

Tfs + 1
. (5.26)

The tuning of the parameters can be done according to any of the many
methods proposed in the literature or even by a trial-and-error procedure.
However, since the purpose of the overall procedure is the attainment of a
high performance in the set-point following task, disregarding of the controller
gains, it is sensible to select the PID parameters aiming only at obtaining a
good load rejection performance.
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Output Function Design

At this point, a desired output function that defines the transition from a set-
point value y0 to another y1 (to be performed in the time interval [0, τ ]) has
to be selected. Without loss of generality and for the sake of clarity assume
y0 = 0. A sensible choice is to adopt a so-called “transition” polynomial
(Piazzi and Visioli, 2001b), i.e., a polynomial function that satisfies boundary
conditions and that is parameterised by the transition time τ . It is formally
defined as

yd(t) = c2k+1t
2k+1 + c2kt2k + · · · + c1t + c0 (5.27)

The polynomial coefficients can be uniquely found by solving the following
linear system, in which boundary conditions at the endpoints of interval [0, τ ]
are imposed: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

yd(0) = 0; yd(τ) = y1

y
(1)
d (0) = 0; y

(1)
d (τ) = 0

...
y
(k)
d (0) = 0; y

(k)
d (τ) = 0

(5.28)

The results can be expressed in closed-form as follows (t ∈ [0, τ ]):

yd(t; τ) = y1

(2k + 1)!
k!

2k+1∑
i=k+1

(−1)i−k−1

i(i − k − 1)!(2k + 1 − i)!

(
t

τ

)i

(5.29)

Expression (5.29) represents a monotonic function with neither undershooting
nor overshooting and its use is therefore very appealing in a practical context.
The order of the polynomial can be selected by imposing the order of con-
tinuity of the command input that results from the input-output inversion
procedure (Piazzi and Visioli, 2001b). Specifically, since the plant is modelled
as a FOPTD transfer function (see (5.23)), its relative degree is equal to one.
Taking into account that the relative degree of the PID controller is zero,
the relative degree of the overall closed-loop system is one. Thus, a third or-
der polynomial (k = 1) suffices if a continuous command input function is
required, i.e.:

yd(t; τ) = y1

(
− 2

τ3
t3 +

3
τ2

t2

)
t ∈ [0, τ ]. (5.30)

Outside the interval [0, τ ] the function y(t; τ) is equal to 0 for t < 0 and equal
to y1 for t > τ .

Stable Input–Output Inversion Algorithm

Once the closed-loop system is designed and the desired output function is se-
lected, the problem of finding the command signal r(t; K, T, L, Kp, Ti, Td, Tf , τ)
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that provides the desired output function has to be solved. For the sake of
clarity of notation, the dependence of the functions and of the resulting coeffi-
cients from the parameters K, T , L, Kp, Ti, Td, Tf is omitted in the following
analysis. The closed-loop transfer function be denoted as

H(s) :=
C(s)P̃ (s)

1 + C(s)P̃ (s)
= K1

b(s)
a(s)

(5.31)

where b(s) and a(s) are monic polynomials. As H(s) is nonminimum phase,
the straightforward inversion of the dynamics, namely, the calculation of
Yd(s)/H(s), where Yd(s) is the Laplace transform of yd(t), would produce
an unbounded command input function, which cannot be obviously adopted
in practice. In other words, a stable dynamic inversion procedure is necessary,
that is a bounded input function has to be found in order to produce the
desired output (Piazzi and Visioli, 2005).
The numerator of the transfer function (5.31) can be rewritten as follows:

b(s) = b−(s)b+(s)

where b−(s) and b+(s) denote the polynomials associated to the zeros with
negative real part (i.e., those of the PID controller) and positive real part
(i.e., those of the Padè approximation) respectively. From (5.25) we have

b+(s) = (s − z+
R)2 + z+2

I (5.32)

where Z+
R = 3/L, Z+

I =
√

3/L correspond to the complex zeros z+
R±jz+

I ∈ C+.
From (5.26) three cases can be distinguished (depending on the selected PID
parameters):

b−(s) = (s − z−1 )(s − z−2 ) (5.33)

b−(s) = (s − z−)2 (5.34)

b−(s) = (s − z−R)2 + z−
2

I (5.35)

corresponding to real distinct zeros (5.33), real coincident zeros (5.34), and
complex zeros (5.35) respectively. Now, consider the inverse system of (5.31)
whose transfer function can be written as:

H(s)−1 = γ0 + γ1s + H0(s)

where γ0 and γ1 are suitable constants and H0(s), a strictly proper rational
function, represents the zero dynamics. This can be uniquely decomposed
according to

H0(s) = H−
0 (s) + H+

0 (s) =
c(s)
b−(s)

+
d(s)
b+(s)
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where c(s) = c1s + c0 and d(s) = d1s + d0 are first-order polynomials with
coefficients depending on K, T , L, Kp Ti, Td and Tf . The modes associated
to b−(s) and b+(s) be denoted by m−

i (t), i = 1, 2, and by m+
i (t), i = 1, 2

respectively. More specifically, the unstable zero modes are given by

m+
1 (t) = ez+

Rt cos z+
I t m+

2 (t) = ez+
Rt sin z+

I t (5.36)

while the stable zero ones are given according to the cases (5.33), (5.34), and
(5.35) by:

m−
1 (t) = ez−

1 t m−
2 (t) = ez−

2 t (5.37)

m−
1 (t) = ez−t m−

2 (t) = tez−t (5.38)

m−
1 (t) = ez−

R t cos z−I t m−
2 (t) = ez−

R t sin z−I t (5.39)

With L the Laplace transform operator, define:

η−
0 (t) := L−1[H−

0 (s)]

and
η+
0 (t) := L−1[H+

0 (s)].

The following propositions and the following theorem represent the solution
to the stable dynamic inversion problem.

Proposition 5.1.∫ t

0 η+
0 (t − v)yd(v; τ)dv =

H+
0 (0)yd(t; τ) +

1
τ3

(
p+
1 (τ)m+

1 (t) + p+
2 (τ)m+

2 (t)
)

+
1
τ3

T +
0 (t; τ)

(5.40)

where

T +
0 (t, τ) =

{
s+
0 (t) + s+

1 (t)τ if t ∈ [0, τ ]
q+
1 (τ)m+

1 (t − τ) + q+
2 (τ)m+

2 (t − τ) if t > τ
(5.41)

and p+
i (τ), q+

i (τ), i = 1, 2 are suitable τ-polynomials and s+
i (t), i = 0, 1 are

suitable t-polynomials.

Proposition 5.2.∫ t

0
η−
0 (t − v)yd(v; τ)dv =

H−
0 (0)yd(t; τ) +

1
τ3

(
p−1 (τ)m−

1 (t) + p−2 (τ)m−
2 (t)

)
+

1
τ3

T−
0 (t, τ)

(5.42)

where

T−
0 (t, τ) =

{
s−0 (t) + s−1 (t)τ if t ∈ [0, τ ]
q−1 (τ)m−

1 (t − τ) + q−2 (τ)m−
2 (t − τ) if t > τ

(5.43)

and p−i (τ), q−i (τ), i = 1, 2 are suitable τ-polynomials and s−i (t), i = 0, 1 are
suitable t-polynomials.
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Theorem 5.3. The function r(t; τ) defined as

r(t; τ) = − 1
τ3

(
p+
1 (τ)m+

1 (t) + p+
2 (τ)m+

2 (t)

−q+
1 (τ)m+

1 (t − τ) − q+
2 (τ)m+

2 (t − τ)
)

if t < 0
(5.44)

r(t; τ) = γ1ẏd(t; τ) + γ0yd(t; τ) + H0(0)yd(t; τ)+
1
τ3

(
s+
0 (t) + s−0 (t) + s+

1 (t)τ + s−1 (t)τ − q+
1 (τ)m+

1 (t − τ)−
q+
2 (τ)m+

2 (t − τ) + p−1 (τ)m−
1 (t) + p−2 (τ)m−

2 (t)
)

if t ∈ [0, τ ]
(5.45)

r(t; τ) = γ0 + H0(0) +
1
τ3

(
p−1 (τ)m−

1 (t) + p−2 (τ)m−
2 (t)

+q−1 (τ)m−
1 (t − τ) + q−2 (τ)m−

2 (t − τ)
)

if t > τ.
(5.46)

is bounded over (−∞, +∞) and r(t; τ) causes the desired output yd(t; τ).

Proofs of the above propositions and of the above theorem can be found in
(Piazzi and Visioli, 2005).
Summarising, the determined function r(t; K, T, L, Kp, Ti, Td, Tf , τ) exactly
solves the stable inversion problem for FOPDT processes (in which the dead-
time term has been substituted by a Padè approximation) controlled by a PID
controller (5.26) and for a family of output functions, which depend on the
free transition time τ .
Actually, from a practical point of view, since the synthesised function (5.44)–
(5.46) is defined over the interval (−∞, +∞), it is necessary to adopt a trun-
cated function ra(t; τ), resulting therefore in an approximate generation of the
desired output yd(t; τ). In particular, a preactuation time ts and a postactu-
ation time tf can be selected so that ra(t; τ) = 0 for t < ts and ra(t; τ) = y1

for t > tp. By taking into account that the preactuation and postactuation
inputs (i.e., the input defined for t < 0 and t > τ respectively) converge ex-
ponentially to zero at time t → −∞ and to y1 at time t → +∞, an arbitrarily
precise approximation can be accomplished (Piazzi and Visioli, 2005). Practi-
cally, the method suggested in (Perez and Devasia, 2003) can be adopted. It
consists of selecting

ts = − 10
Drhp

(5.47)

and

tp =
10

Dlhp
(5.48)

where Drhp and Dlhp are the minimum distance of the right- and left-half
plane poles respectively from the imaginary axis of the complex plane.
Hence, the approximate command signal to be actually used is
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ra(t; τ) :=

⎧⎨
⎩

0 for t < ts
r(t; τ) for ts ≤ t ≤ tf
y1 for t > tf .

(5.49)

It is worth highlighting that the preactuation time depends only on the (ap-
parent) dead time of the process, as this determines the unstable zeros of
the closed-loop systems by means of the Padè approximation. Conversely, the
postactuation time depends on the tuning of the PID parameters because the
stable zeros of the closed-loop systems are those of the controller.

Discussion

The presented stable input-output inversion procedure can be performed by
means of a symbolic computation, i.e., a closed-form expression of the com-
mand input function r(t; K, T, L, Kp, Ti, Td, Tf , τ) results. Indeed, the actual
command signal to be applied for a given plant and a given controller is de-
termined by substituting the actual value of the parameters into the resulting
closed-form expression and this actually motivates its strong appeal in the
context of PID control. In this framework, the choice of using a second-order
Padè approximation is motivated, from one side, by keeping the expression of
r(; K, T, L, Kp, Ti, Td, Tf , τ) as simple as possible and, from the other side, by
providing an approximation as good as possible, since the basic rationale of
this method is to apply a model-based feedforward control action.
In any case, it is worth noting that the presented inversion procedure is based
on a general one (Piazzi and Visioli, 2005), where H(s) can be the rational
transfer function of any (stable) system, provided that there are not purely
imaginary zeros. Thus, as already mentioned, the proposed approach can be
straightforwardly applied also to integral (and unstable) processes P̃ (s), as
it is based on the inversion of the dynamics of the closed-loop system H(s).
Analogously, the same method can be trivially extended to PI, P and PD
control.
It appears also that the devised method can be extended also to high-order
processes. Thus, a more accurate model of the process, if available, can be
fully exploited. However, in this case, the inversion procedure has to be per-
formed on purpose. Conversely, if a FOPDT (or a IPDT) model is employed,
the determined general closed-form expression of r(t; K, T, L, Kp, Ti, Td, Tf , τ)
can be used.
Once the PID controller has been tuned, the only free design parameter is
the transition time τ . Its role is basically the same of the transition time in
the causal nonlinear feedforward method described in Section 5.3, namely,
it allows to handle the trade-off between performance, robustness and con-
trol activity. It can be selected therefore by applying an analogous reasoning.
However, since a closed-form expression of the control variable can be easily
derived, the transition time can be also determined by solving an optimisation
problem where its value has to be minimised subject to actuator constraints.
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5.4.3 Simulation Results

In the following examples the process output has to perform a transition
from 0 to y1 = 1. The methodology is evaluated with processes with different
dynamics.

FOPDT Process

Consider the following FOPDT process:

P1(s) =
1

10s + 1
e−6s. (5.50)

To prove the effectiveness of the method with different PID tunings, three sets
of PID parameters have been considered, namely, the one given by the Ziegler–
Nichols step response PID formula (Kp = 2, Ti = 12, Td = 3), the one given
by the Ziegler–Nichols step response PI formula (Kp = 1.5, Ti = 18, Td = 0),
and the one that results from the minimization of the ISTE integral criterion
for the load disturbance rejection (Zhuang and Atherton, 1993) (Kp = 2.41,
Ti = 7.33, Td = 2.74). In the first and in the third case it has been set Tf =
0.01 (for a PI controller the filter is not necessary). To give a clear idea of the
different performance achieved with the considered tuning rules, the set-point
step response is plotted in Figure 5.17. Note the high initial value of the control
variable due to the poor filtering of the derivative action. Saturation limits
have not been applied in order to avoid to bias the results. Then, the noncausal
feedforward approach has been applied by always fixing the transition time
to τ = 10. The resulting value of the preactuation and postactuation times
in the three cases are ts = −20 and tp = 60, tp = 180, tp = 54.8 respectively
(note that, for convenience, the time axis has been properly shifted in order
to have ts = 0). The determined command functions are reported in Figure
5.18 and the corresponding process outputs and control variables are plotted
in Figure 5.19. It appears that the inversion-based methodology is able to
provide low rise times and low overshoots at the same time but, most of all,
is able to provide basically the same response despite a very different PI(D)
tuning, as it is evidenced by the very different step responses they provide.
Note that this is achieved with a much lower control effort with respect to the
classic case since the step signal is substituted by a smoother signal.

High-order Process

As a second example the following high-order process is considered:

P2(s) =
1

(s + 1)8
. (5.51)

By applying the area method (see Chapter 7), a FOPDT transfer function
has been estimated, resulting in K = 1, T = 3.04 and L = 4.97. With respect
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Fig. 5.17. Set-point step response for process P1(s). Solid line: Ziegler–Nichols PID
tuning; dashed line: Ziegler–Nichols PI tuning; dotted line: ISTE criterion tuning.
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Fig. 5.18. Inversion-based command input for process P1(s). Solid line: Ziegler–
Nichols PID tuning; dashed line: Ziegler–Nichols PI tuning; dotted line: ISTE crite-
rion tuning.
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Fig. 5.19. Response with the noncausal feedforward approach for process P1(s).
Solid line: Ziegler–Nichols PID tuning; dashed line: Ziegler–Nichols PI tuning; dotted
line: ISTE criterion tuning.

to these parameters, the same tuning formulae as for the FOPDT example
has been adopted, resulting in Kp = 0.73, Ti = 9.93, Td = 2.48 (Tf = 0.01)
for the Ziegler–Nichols PID tuning, Kp = 0.55, Ti = 14.90, Td = 0 for the
Ziegler–Nichols PI tuning, and Kp = 1.06, Ti = 4.26, Td = 2.48 (Tf = 0.01)
for the minimization of the ISTE integral criterion. Set-point step responses
are plotted in Figure 5.20. Note that the control variable is shown just for
the beginning of the transient response, otherwise it cannot be evaluated be-
cause of the scaling. In any case, the different performance achieved without
the feedforward action clearly emerges. The noncausal feedforward action has
then been determined by selecting a transition time equal to τ = 20 for all
the adopted tuning rules. The resulting values of the preactuation and postac-
tuation times in the three cases are ts = −16.57 and tp = 51.23, tp = 149,
tp = 49.6 respectively. The command functions determined by applying the
input-output inversion procedure are reported in Figure 5.21 and the cor-
responding control system responses are plotted in Figure 5.22. The same
considerations of the previous example can be done also on this case. Further,
the robustness of the method with respect to model uncertainties appears.
Indeed, the feedback controller reduces the effects of the model uncertainties
in the frequency range of the command input and therefore the application of
such command input to the closed-loop system is effective.
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Fig. 5.20. Set-point step response for process P2(s). Solid line: Ziegler–Nichols PID
tuning; dashed line: Ziegler–Nichols PI tuning; dotted line: ISTE criterion tuning.
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Fig. 5.21. Inversion-based command input for process P2(s). Solid line: Ziegler–
Nichols PID tuning; dashed line: Ziegler–Nichols PI tuning; dotted line: ISTE crite-
rion tuning.
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Fig. 5.22. Response with the noncausal feedforward approach for process P2(s).
Solid line: Ziegler–Nichols PID tuning; dashed line: Ziegler–Nichols PI tuning; dotted
line: ISTE criterion tuning.

IPDT Process

As an example for IPDT processes, the following process is considered (Wang
and Cluett, 2000):

P3(s) =
0.0506

s
e−6s. (5.52)

Two sets of PID parameters have been adopted, namely, the one based
on the minimisation of the integrated square error for set-point responses
(Visioli, 2001a) (which is actually a PD controller with Kp = 3.394 and
Td = 2.94) and the one proposed in (Wang and Cluett, 2000) (Kp = 2.0123,
Ti = 31.2030, Td = 1.5674). In both cases it has been set again Tf = 0.01.
The classic set-point step responses are plotted in Figure 5.23.
The noncausal feedforward action has been determined by setting τ = 10. The
resulting value of the preactuation and postactuation times are ts = −20.01s
and tp = 29.41 and tp = 295.48 for the PD and PID case respectively. The
determined command functions are reported in Figure 5.24 and the corre-
sponding control system responses are plotted in Figure 5.25.
It appears that the same considerations that have been done for self-regulating
processes can be done also for integrating processes. Indeed, almost the same
performance is obtained despite the different tuning strategies that have been
employed.
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Fig. 5.23. Set-point step response for process P3(s). Solid line: PD control; dashed
line: PID control.
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Fig. 5.24. Inversion-based command input for process P3(s). Solid line: PD control;
dashed line: PID control.
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Fig. 5.25. Response with the noncausal feedforward approach for process P3(s).
Solid line: PD control; dashed line: PID control.

Unstable Process

The presented noncausal feedforward technique can be straightforwardly ap-
plied also to unstable processes.
Consider for example the process model by the following transfer function:

P4(s) =
1

s − 1
e−0.2s. (5.53)

Also in this case, two sets of PID parameters have been selected, the one that
results from the minimisation of the integrated square error of the load distur-
bance response (Visioli, 2001a) (Kp = 6.85, Ti = 0.36, Td = 0.12, Tf = 0.01)
and the one proposed in (Ho and Xu, 1998), i.e., Kp = 3.46 and Ti = 1.47,
which is actually a PI controller. The desired transition time has been fixed
to τ = 1.
Results are shown in Figures 5.26–5.28. It can be seen that the methodology
retains its effectiveness also for unstable processes and therefore its generality
appears.
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Fig. 5.26. Set-point step response for process P4(s). Solid line: PID control; dashed
line: PI control.
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Fig. 5.27. Inversion-based command input for process P4(s). Solid line: PID control;
dashed line: PI control.
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Fig. 5.28. Response with the noncausal feedforward approach for process P4(s).
Solid line: PD control; dashed line: PID control.

Role of the Parameter τ

In order to clarify better the role of the transition time τ , the following result
is presented. Consider the process

P5(s) =
1

(s + 1)4
. (5.54)

The PID controller is tuned by means of a genetic algorithm in order to achieve
the minimum integrated absolute error for a load step disturbance. It results
Kp = 3.50, Ti = 1.77, and Td = 1.47 (Tf = 0.01). Then, the area method
has been adopted to estimate a FOPDT transfer function: it results K = 1,
T = 2.12 and L = 1.89. The process variable and the control variable resulting
from the application of the noncausal feedforward approach with a value of
the transition time τ that ranges from 1 to 10 are reported in Figure 5.29 and
5.30 respectively. It can be easily seen that when the transition time increases,
the obtained process output is more similar to the desired one (expressed by
the polynomial form (5.30)) and the control effort decreases.
Finally, it is worth stressing that the robustness of the (continuous-time)
noncausal approach with respect to the identification method adopted for
the estimation of the FOPDT (or IPDT) transfer function can be verified in
(Visioli and Piazzi, 2005).
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Fig. 5.29. Process variable for process P5(s) with different value of the transition
time τ

0 5 10 15 20 25

2

0

2

4

6

8

time

co
nt

ro
l v

ar
ia

bl
e

Fig. 5.30. Control variable for process P5(s) with different value of the transition
time τ
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5.4.4 Experimental Results

The effectiveness of the (continuous-time) noncausal feedforward approach has
been verified by applying it to a level control task by means of the laboratory
equipment described in Section A.1.
In particular, a single tank has been considered and a transition from the
initial level y0 = 2 V to the final level y1 = 3 V has been required. The model
of the system has been estimated as

P (s) =
1.93

26s + 1
e−s. (5.55)

Then, a PI controller has been selected with Kp = 2.5 and Ti = 8.3. The
noncausal feedforward action has been determined by selecting a transition
time of τ = 10 s and τ = 20 s. The resulting command input r(t) is plotted in
both cases in Figure 5.31. The obtained process variable and controller output
in the two experiments are plotted in Figures 5.32 and 5.33, respectively. The
achieved performance is compared with that obtained by applying a step to
the set-point signal. Note that the actual process input saturates at 5 V.
It can be seen that, as expected, with the smallest value of the transition
time the rise time is the smallest (almost the same of the step response), but
the control effort is the highest (actually higher than that obtained with the
step: this can be explained by evaluating the determined command input that
exceed the desired new steady-state value during the transient).
The noncausal approach allows in any case the reduction the overshoot. The
fact that almost the same overshoot is achieved with both values of the de-
sired transition time is probably due to the nonlinear dynamics that has been
neglected in the design phase.
The methodology has also been applied by adding (via software) an addi-
tional dead time of 10 s to the process input (the same model (5.55) has been
adopted by changing the dead time from 1 s to 11 s). The PI parameters have
been selected as Kp = 1.24, Ti = 31. Again, the two values of τ = 10 s and
τ = 20 s for the transition time have been selected.
The calculated command input signals are reported in Figure 5.34. The cor-
responding process variables and controller outputs, compared again with the
case of a set-point step signal, are plotted in Figure 5.35 and 5.36 respec-
tively. In this case the inversion-based approach outperforms the standard
one, by avoiding significant oscillations, despite the rise time is not increased
for τ = 10 s and only slightly increased for τ = 20 s (in this latter case less
control effort is required).
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Fig. 5.31. Inversion-based command input for the level control task. Solid line:
τ = 10; dashed line: τ = 20.
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Fig. 5.32. Process variable for the level control task. Solid line: noncausal approach
with τ = 10; dashed line: noncausal approach with τ = 20; dotted line: step response.
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Fig. 5.33. Controller output for the level control task. Solid line: noncausal approach
with τ = 10; dashed line: noncausal approach with τ = 20; dotted line: step response.
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Fig. 5.34. Inversion-based command input for the level control task with additional
dead time. Solid line: τ = 10; dashed line: τ = 20.
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Fig. 5.35. Process variable for the level control task with additional dead time.
Solid line: noncausal approach with τ = 10; dashed line: noncausal approach with
τ = 20; dotted line: step response.
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Fig. 5.36. Controller output for the level control task with additional dead time.
Solid line: noncausal approach with τ = 10; dashed line: noncausal approach with
τ = 20; dotted line: step response.
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5.5 Noncausal Feedforward Action: Discrete-time Case

5.5.1 Methodology

A noncausal feedforward action can be designed also in a different context,
namely, by inverting the dynamics of the closed-loop system after having
identified it in the discrete-time framework by means of a step response (Visioli
and Piazzi, 2003).
Consider again the scheme shown in Figure 5.16. Actually, the controller C
can be of any type (provided that the closed-loop system is asimptotically
stable), but for the sake of simplicity it is assumed that it is a PID controller.
As for the method described in Section 5.4, the aim is to find the command
function r(t) that produces a desired system output transition from y0 to
y1, starting from time t = 0, but here no a priori knowledge on the process
model is assumed. Despite the process and the controller are defined in the
continuous-time domain, sampled data are considered in the following analysis
(actually, nowadays the use of microprocessors is the common practice in
industrial environments). It is assumed that the sampling time T has been
chosen suitably by any standard technique (Åström and Wittenmark, 1997).
An identification experiment can be easily performed by applying a step signal
to the input of the closed-loop system. A closed-loop system model can then
be obtained by considering the truncated response (t ∈ {T, 2T, . . . , NT }):

y(t) = y0 + gt/T r(0) +

t
T −1∑
i=1

gi [r(t − iT ) − r(t − (i + 1)T )] (5.56)

where gi := g(iT ), i = 1, . . . , N are the sampled output values in response
to a unit-step input (see Figure 5.37) and r(t) is the system input. For the
sake of simplicity and without loss of generality, assume y0 = 0. The number
N of parameters has to be taken sufficiently high in order to allow a suffi-
ciently accurate description of the system, but not too high to minimise the
computational effort of the control strategy. From a practical point of view,
the sampling of the step response in order to obtain parameters gi should
stop when the process output remains close to its steady-state value for a suf-
ficiently long time. For the presented methodology, it is convenient to write
Expression (5.56) in matrix form:

Y = GR (5.57)

where

Y =

⎡
⎢⎢⎢⎢⎢⎣

y(T )
y(2T )
y(3T )

...
y(NT )

⎤
⎥⎥⎥⎥⎥⎦
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Fig. 5.37. Model coefficients based on step response

G =

⎡
⎢⎢⎢⎢⎢⎣

g1 0 0 . . . 0
−g1 + g2 g1 0 . . . 0
−g2 + g3 −g1 + g2 g1 . . . 0

...
...

...
. . . 0

−gN−1 + gN −gN−2 + gN−1 −gN−3 + gN−2 . . . g1

⎤
⎥⎥⎥⎥⎥⎦

and

R =

⎡
⎢⎢⎢⎢⎢⎣

r(0)
r(T )
r(2T )

...
r((N − 1)T )

⎤
⎥⎥⎥⎥⎥⎦

It is worth noting that in many cases it might not be necessary to perform an
ad hoc identification experiment (i.e., to stop the normal process operations)
in order to apply the presented methodology. In fact, as the model is obtained
by evaluating a standard closed-loop step response, data taken from an output
transition performed during routine process operations can be adopted. Ob-
viously, it is important that the collected data be representative of a true step
response (and therefore operations such as filtering and detrending might be
necessary (Leva et al., 2001)) and if an unmeasured load disturbance occurs
during the transient response, they should not be adopted. In this context, it
can be useful to adopt the method proposed in (Hägglund and Åström, 2000)
to detect load disturbances (see Section 8.4.1).
The desired output function is chosen again as a transition polynomial (5.29).
In contrast with the continuous-time case, here its order can be chosen arbi-
trarily. Indeed, the order of the polynomial can be selected in order to handle
the trade-off between the need to decrease the rise time and the need to de-
crease the control effort, taking into account that the rise time decreases and
the control effort increases when the order of the polynomial increases. In gen-
eral, a good choice in this context is to select k = 2, i.e., the desired output
function is:
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yd(t; τ) =

⎧⎪⎨
⎪⎩

y1

(
6
τ5

t5 − 15
τ4

t4 +
10
τ3

t3

)
if 0 ≤ t ≤ τ

y1 if t > τ

. (5.58)

Regarding the choice of the value of the transition time τ , the same consider-
ations done in the continuous-time case can be applied also in this case.
Once the desired output function has been selected, i.e., the array Yd has
been constructed, then the corresponding closed-loop system input r(t) that
causes yd(t; τ) can be easily determined by simply inverting the system us-
ing Expression (5.57). In order for matrix G to be invertible by a standard
numeric algorithm, it should be well-conditioned, for example there must not
be a row (or a column) where all the elements are very small with respect to
the elements of other rows (or columns). This happens when the process has
a true dead time or an apparent dead time (i.e., when the process is of high
order), which causes some of the first sampled output values gi of the step
response to be null or almost null. Thus, denote by k the number of the first
rows of G in which all the elements are less than a selected threshold ε. Then,
matrix Ĝ can be obtained by removing the first k rows and the last k columns
from G. Subsequently, by evaluating yd(t; τ) at the first N − k sampling time
intervals, the array Yd = [yd(T ; τ) yd(2T ; τ) · · · yd((N − k)T ; τ)]T can be
easily constructed. The first N −k values of the command reference input are
then determined by applying the following expression:

R̂ = [r(T ) r(2T ) · · · r((N − k)T )]T = Ĝ−1Yd. (5.59)

In this way, the input function can be calculated by simply determining the
inverse of a matrix, which can be performed by using different algorithms (see
for example (Press et al., 1995)).
Note that if the sampling time T and the value of N have been selected appro-
priately, as well as the value of τ , then the last element of the array R̂ actually
corresponds to the steady-state value of the input and therefore the value of
r((N − k)T ) can be applied to the closed-loop system for t > (N − k)T . Note
also that, since the first k rows and the last k columns have been removed
from matrix G, the output function obtained is delayed by kT with respect
to the desired one. Actually, the dead time is removed in the model of the
closed-loop system transfer function adopted in the dynamic inversion.
In the presence of measurement noise, as is always the case in practical ap-
plications, the method can be successfully applied provided that the step
response function employed for the identification of the closed-loop system
model (5.56) is appropriately filtered. Since the required filtering can be per-
formed off-line, a zero-phase noncausal filter can be applied in order to avoid a
phase distortion. Further, the presence of the noise has to be considered when
matrix Ĝ is constructed from G. Actually, due to the noise measurements, it
is sensible to redefine parameter ε as a noise band NB (Åström et al., 1993),
i.e., a threshold value that determines, as before, whether the sampled value
gi has to be discarded. Specifically, if |gi| < NB , then gi is considered to be
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zero in the construction of matrix Ĝ. The value of NB can be easily selected
by monitoring that process output for a sufficiently long time when the pro-
cess is at steady-state.
Finally, it is worth stressing that, as in the continuous-time case, the inversion-
based design of the feedforward action is independent of the PID design. It
is therefore convenient to tune the controller in order to guarantee good load
disturbance performance, if this is of concern. In fact, even if this implies
that the predicted closed-loop step response is unsatisfactory, the feedforward
action is capable to provide an output transition with low rise time and low
overshoot.

5.5.2 Simulation Results

Some simulation examples are presented in order to illustrate the noncausal
feedforward methodology in the discrete-time case and to evaluate its effec-
tiveness. For the sake of clarity, measurement noise is taken into account only
in the last example. For all the examples presented the PID controller has
an output-filtered ideal structure (with the derivative action applied to the
process variable) described by the following expression:

U(s) = Kp

(
E(s) +

1
Tis

E(s) − TdsY (s)

)
1

Tfs + 1
(5.60)

where U(s), E(s) and Y (s) are clearly the Laplace transform of the control
variable, control error and process output respectively. The required output
transition is from y0 = 0 to y1 = 1.

FOPDT Process

The following FOPDT process is considered:

P1(s) =
1

10s + 1
e−5s. (5.61)

The PID controller has then been tuned by fixing Kp = 2.61, Ti = 10.05,
Td = 2.51, and Tf = 0.01, and the sampling time has been fixed to 0.5 s. In
order to obtain the closed-loop system model, N = 161 samples of the step
response have been evaluated and matrix G has been constructed accordingly.
By fixing ε = 0.01, it results k = 11, i.e., the first 11 rows and the last 11
columns of G have been removed, therefore obtaining matrix Ĝ of dimen-
sion 150 × 150. The desired output array has been constructed by selecting
τ = 5 s. Then, the command input that substitutes the step signal has been
determined by inverting the system. The response of the control system in
the two cases is plotted in Figure 5.38, while the determined command input
is shown in Figure 5.39. A significant improvement of the set-point following
performance appears, although the control effort does not increase by applying
the inversion-based command input.
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Fig. 5.38. Response before and after the application of the noncausal feedforward
approach for process P1(s). Solid line: step response; dashed line: noncausal feedfor-
ward command input response.
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Fig. 5.39. Inversion-based command input for process P1(s)
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High-order Process

As a second example, the high-order process

P2(s) =
1

(s + 1)8
e−5s (5.62)

is considered. The selected PID parameters are Kp = 0.37, Ti = 19.93,
Td = 4.98 and Tf = 0.01. The sampling time has been fixed to 2 s. A number
N = 101 of output samples has been used to model the closed-loop system.
By fixing again ε = 0.01 it results k = 5 and therefore the obtained Ĝ is of
dimension 96× 96. The (initial) set-point step response and the one obtained
by applying the noncausal feedforward technique after having selected a tran-
sition time τ = 20 are plotted in Figure 5.40. The determined command input
is reported in Figure 5.41
As in the previous example, the dynamic-inversion-based systems outperforms
the one with the step signal, by providing a much less value of the rise time.
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Fig. 5.40. Response before and after the application of the noncausal feedforward
approach for process P2(s). Solid line: step response; dashed line: noncausal feedfor-
ward command input response.
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Fig. 5.41. Inversion-based command input for process P2(s)

5.5.3 Experimental Results

As for the continuous-time case, also for the discrete-time case the effective-
ness of the noncausal feedforward approach has been verified by applying it
to a level control task by means of the laboratory equipment described in
Section A.1.
The same tank has been considered and a transition from the initial level
y0 = 2 V to the final level y1 = 3 V has been required.
The PI controller has been tuned again by fixing Kp = 2.5 and Ti = 8.3 and
the sampling time has been chosen as 0.01 s. The process variable resulting
from the application of a step set-point signal has been filtered before applying
the inversion procedure. In particular, a median filter has been first employed
and then data have been interpolated by means of a polynomial.
The noncausal feedforward action has been determined by selecting a transi-
tion time of τ = 10 s and τ = 20 s and it has been applied to the closed-loop
system. The process variable and controller output obtained in the two ex-
periments, together with the one that results from the application of the step
set-point signal, are plotted in Figures 5.42 and 5.43 respectively.
Note that the actual process input saturates at 5 V. The resulting command
input r(t) for both τ = 10 s and τ = 20 s is reported in Figure 5.44. As ex-
pected, the rise time obtained for a desired transition time of τ = 10 s is less
than that obtained for τ = 20 s and it is very similar to the one obtained with
a step signal. However, the overshoot is significantly decreased (and, conse-



5.5 Noncausal Feedforward Action: Discrete-time Case 137

quently, also the settling time) when the feedforward action is used. It can be
also evaluated how parameter τ handles the trade-off between aggressiveness
and control effort (actually, for τ = 10 s, the manipulated variable saturates
for a small time interval).
Again as for the continuous-time case, the methodology has also been applied
by adding (via software) an additional dead time of 10 s to the process input
(the PI parameters have been selected as Kp = 1.24, Ti = 31). Again, the two
values of τ = 10 s and τ = 20 s for the transition time have been selected.
Results are reported in Figures 5.45–5.47 (note that the same sampling time
and the same filtering method as before has been used).
It can be seen that for τ = 10 s the saturation of the control variable (and
possibly the nonlinear dynamics of the system) prevents the achievement of a
monotonic process variable. In any case with both τ = 10 s and τ = 20 s the
control system response presents a much smaller overshoot and a similar rise
time.
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Fig. 5.42. Process variable for the level control task. Solid line: noncausal approach
with τ = 10; dashed line: noncausal approach with τ = 20; dotted line: step response.
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Fig. 5.43. Controller output for the level control task. Solid line: noncausal approach
with τ = 10; dashed line: noncausal approach with τ = 20; dotted line: step response.
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Fig. 5.44. Inversion-based command input for the level control task. Solid line:
τ = 10; dashed line: τ = 20.
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Fig. 5.45. Process variable for the level control task with additional dead time.
Solid line: noncausal approach with τ = 10; dashed line: noncausal approach with
τ = 20; dotted line: step response.
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Fig. 5.46. Controller output for the level control task with additional dead time.
Solid line: noncausal approach with τ = 10; dashed line: noncausal approach with
τ = 20; dotted line: step response.
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Fig. 5.47. Inversion-based command input for the level control task with additional
dead time. Solid line: τ = 10; dashed line: τ = 20.

5.6 Feedforward Action for Disturbance Rejection

A feedforward action can be very beneficial also for compensating load distur-
bances, if the model of the process and of the disturbance are known with a
sufficient accuracy (Lewin and Scali, 1988). In this case, the standard control
scheme is that shown in Figure 5.48, where H(s) is the transfer function that
expresses the influence of the disturbance on the process and

G(s) =
H(s)
P (s)

, (5.63)

so that, in principle, the transfer function from d to y results to be zero.
It has to be noted that, since the inverse of P (s) has to be employed, the pro-
cess model should not contain unstable zeros, otherwise an internally unstable
system results. Further, transfer function G(s) has to be physically realisable,
namely, the dead time term of H(s) has to be greater than or equal to that
of P (s), otherwise a negative time delay results. Finally, the determined G(s)
has to be proper, i.e., the relative order of H(s) has to be greater than or
equal to that of P (s).
Often, in practical situations, both H(s) and P (s) are selected as FOPDT
transfer functions, i.e.,

P (s) =
K

Ts + 1
e−Ls
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Fig. 5.48. Block diagram for the standard implementation of feedforward action
for load disturbance rejection task

and

H(s) =
KH

THs + 1
e−LHs.

If the dead time terms of the two transfer functions is the same, i.e., L = LH ,
then the resulting feedforward controller results to be a lead-lag unit:

G(s) =
KH

K

Ts + 1
THs + 1

.

A lead-lag element is used also in other situations when a physically unrealis-
able controller results and therefore an approximate solution has to be found
(Seborg et al., 2004). In fact, if LG := LH − L is greater than zero, then the
term e+LG can be approximated by increasing the lead time constant from T
to T + LG, i.e.,

G(s) =
KH

K

(T + LG)s + 1
THs + 1

.

Further, if LH = 0 a SOPDT transfer function is estimated for the process,
namely,

P (s) =
K

(T1s + 1)(T2s + 1)
,

then the resulting improper transfer function of the feedforward controller can
be approximated by

G(s) =
KH

K

(T1 + T2)s + 1
THs + 1

.

It is worth noting that transfer function H(s) expresses where the disturbance
enters in the process, i.e., which part of the process dynamics is excited by
the disturbance. Actually, it is known that a disturbance is most detrimental
when it affects all the process dynamics, that is, when it enters at the input
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of the process (thus, H(s) = P (s)). In this case it is worth employing a feed-
forward action (provided that the model of the process and the model of the
disturbances are known with a sufficient accuracy), while if the disturbance
enters late in the process, a properly designed feedback controller is sufficient
to compensate it effectively. In this context, a simple method to assess if a
feedforward action is worth to being used has been proposed in (Petersson et
al., 2001; Petersson et al., 2003). It consists in comparing the control variable
that results when the actual (step) disturbance occurs with the control vari-
able signals that results when a (step) disturbance occurs at the input and
at the output of the process. In particular, consider the two signals ub and
ua that results by applying a step disturbance signal (without feedforward
action) at the process input and at the process output respectively (i.e., by
setting H(s) = P (s) and H(s) = 1 respectively). These signals can be ob-
tained in practical cases by applying the disturbances to the actual process
or via simulation if an accurate process model is available. Denote the (refer-
ence) area between the two signals as Ar. The time interval to be considered
for this computation is the one from the application of the disturbance to
the average residence time of the process, which is defined as (Åström and
Hägglund, 1995)

Tar =
A0

K
(5.64)

where K is the process gain and

A0 =
∫ ∞

0

(s(∞) − s(t))dt (5.65)

where s(t) is the (open-loop) step response (note that Tar is a rough estimate
of the time taken for the process input to have a significant influence on the
output and for FOPDT processes this is equal to the sum of the dead time and
the time constant). Then, consider the control variable u that results when the
true load disturbance occurs in the process and calculate the (disturbance)
area Ad between u and ub. The index that determines the suitability of an
additional feedforward control is determined by dividing the disturbance area
by the reference area, namely, by calculating Ad/Ar. This fact is depicted
in Figure 5.49. If the index is close to or greater than one, then this means
that the disturbance signal enters before or early in the process and therefore
an additional feedforward control action is likely to improve the regulation
performance. Conversely, if the index is close to zero, then the disturbance
enters late in the process and therefore the feedback action is sufficient. Note
that, for a correct application of the technique, the signals adopted have to
be scaled properly.
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Fig. 5.49. Illustration of technique for the evaluation of the suitability of a feed-
forward action for disturbance rejection. Solid line: the disturbance enter at the
process input; dashed line: the disturbance enters at the process output; dotted line:
measured disturbance.

5.7 Conclusions

A feedforward controller can be very beneficial in solving the problem of
achieving a satisfactory performance both in the set-point following and in
the load disturbance rejection task. Different methodologies for the design of
a feedforward controller have been described in this chapter. In particular, the
set-point following performance have been addressed. Features of the standard
approach have been discussed. It has been shown that when the control task
does not involve the tracking of a reference signal but only the transition
of the process variable from a set-point value to another one is of concern,
different alternative methods can be considered. The use of a nonlinear feed-
forward action allows to improve considerably the control system performance
by taking into account explicitly the actuator constraints. Its implementation
requires indeed a modest extra design effort. The great advantage of the non-
causal approach is that a predefined performance can be actually obtained
almost “independently” of the tuning of the (PID) controller and of the ac-
tual process dynamics. In fact, by looking at the results, it appears that very
similar responses are obtained with very different values of the PID parame-
ters (namely, with PID parameters that provide very different set-point step
responses) and with processes of different dynamics. This advantage is paid
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by an increased implementation complexity. It can be remarked that each of
the considered methodologies has in any case a tuning parameter that allows
to handle the trade-off between aggressiveness and robustness.
Finally, it is worth highlighting that, if only the set-point following task is of
concern, in many practical cases a fine tuning of the controller could allow
to obtain a high performance and the improvement provided by the use of
a feedforward control system is not significant. However, the selection of the
correct parameters can be a difficult and time consuming task. In this context
the feedforward control action can be used to achieve (in a relatively easy way)
a satisfactory performance despite a not very appropriate tuning of the PID
parameters and therefore to reduce the overall design effort. It is important
to note that, in contrast with the constant set-point weighting approach, the
use of a feedforward allows to recover the set-point following performances
even in the case of a sluggish tuning of the PID controller.
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Plug&Control

6.1 Introduction

One of the main reasons for the success of PID controllers in the industrial
context is their relative ease of use. Indeed, the fast commissioning of the
controller is essential in many applications, where a tight performance is not
required, in order to reduce the implementation costs. In this context, the
availability of the so-called Plug&Control function (i.e., to automatically make
the controller work properly after simply connecting it in the control archi-
tecture, without further intervention from the operator) is highly desirable.
With respect to the classic automatic tuning procedures, this function has
the advantage that a dedicated identification (possibly time-consuming) ex-
periment is not required, since the estimation of the process parameters is
performed during the normal start-up of the process. This might allow a sig-
nificant saving of time, energy and material.
Methodologies related to this topic are described in this chapter. Although
this can be considered a relatively recent subject of research, results are very
encouraging and industrial implementations are already available. The aim of
the following analysis is also to provide a characterisation of the considered
techniques in order to verify its applicability in different contexts.

6.2 Self-tuning Temperature Control

The algorithm described hereafter has been presented in (Pfeiffer, 1999; Pfeif-
fer, 2000), and is implemented as a functional block in Programmable Logic
Controllers (PLCs) made by Siemens.
It is particularly suitable for temperature processes (although it can be em-
ployed also in other contexts), where the dead time is small and a pole of
the system transfer function is close to the origin of the complex plane and
therefore causes an integrator-like dynamics in the relevant working range.
Further, there is often the requirement of avoiding the overshoot because a
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long time might be necessary to recover it if an active cooling is not present.
The rejection of disturbances is also of concern. In this framework a tuning
of the PID controller based on pole-zero cancellation is not recommended, as
it would provide a very sluggish load disturbance response. The problem can
be solved partially by setting a low value of the integral time constant and
by applying the derivative and the proportional action to the process output
(i.e., by setting the set-point weight to zero).
The Plug&Control algorithm consists of initially applying a constant heating
energy umax when a set-point change from y0 (initial process value) to y1

is required (at time t0). The constant value of the manipulated variable is
maintained until the inflection point of the process output is detected. This
occurs when the ascent ratio of the step response decreases in two successive
cycles or when the process value attains 70% percent of the step amplitude.
It has to be noted that an adaptive low-pass filtering has to be applied in or-
der to effectively suppress the measurement noise. Then, an integrating plus
first-order lag model of the process is initially estimated as

P (s) =
K

s(Ts + 1)
(6.1)

with

K =

dyw

dt
umax − u0

(6.2)

and

T = tw − t0 −
yw − y0

dyw

dt

(6.3)

where yw is the value of the process output at the inflection point, tw is
the corresponding time instant and u0 is the initial steady-state value of the
control variable.
Based on this process model, a PI controller is initially tuned according to
the symmetric optimum principle (Åström and Hägglund, 1995), namely

Kp =
1

2TK
Ti = 4T. (6.4)

It is then slightly detuned in order to avoid overshoots.
The designed PI controller is immediately applied to the process and this al-
lows to attain the desired set-point value y1 (see Figure 6.1) for an illustration
of the technique). At this point, the process gain can be correctly estimated
as

K =
y1 − y0

u1 − u0
, (6.5)

where u1 is the final steady-state value of the control variable. With this
new value, a more accurate process model can be estimated. In particular, a
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Fig. 6.1. An illustrative example of the application of the self-tuning temperature
control methodology

second-order transfer function is initially selected, namely,

P (s) =
K

(T1s + 1)(T2s + 1)
. (6.6)

In order to estimate the two time constants T1 and T2, the so-called recovery
time is first determined:

tr =
K(umax − u0)

dyw

dt

. (6.7)

The inflection point in the step response of P (s) (6.6) can be determined
analytically as

tw = f
ln f

f − 1
T2. (6.8)

where f is the ratio between T1 and T2. Then, considering the intersection of
the inflection tangent with the lines y = y0 and y = y1 allows to write the
following equations:

tr

T
=

1

f− f
f−1

(
1 + f +

f ln f

f − 1

)
− 1

, (6.9)
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T2 = trf
− f

f−1 . (6.10)

An approximate solution of this nonlinear system can be found by replacing
the exponential function with a linear approximation in the relevant parameter
space f ∈ (2, 20). Thus, Equation (6.9) can be rewritten as

tr

T
= 1.1919f + 8.0633, (6.11)

while Equation (6.10) can be rewritten as

T2 = tr
1

1.0722f + 2.0982
. (6.12)

Then, by considering Equations (6.3), (6.7), (6.11) and (6.12), the values of
f and T2 can be easily determined, while the value of T1 can be trivially
calculated by applying the relation T1 = fT2.
Based on the estimated second-order model, the PID controller in ideal form
(with the proportional and derivative actions applied to the process output)
is tuned definitely according to a tuning rule derived from the minimisation
of a quadratic performance index:

Kp = 1.5
21.4
K

, (6.13)

Td = T2

(
0.985− 8.417

f + 10.66

)
, (6.14)

Ti = (0.1236f + 3.322)Td. (6.15)

A first-order filter, whose time constant is fixed to Td/5, is then used for the
derivative action. It is worth noting at this point that if tr/T > 9.64, the
second-order transfer function (6.6) is considered to be no more suitable for
an accurate modelling of the process. Thus, in this case the transfer function

P (s) =
K

(T1s + 1)n
(6.16)

is employed. By following a reasoning similar to the previous one, the two
model parameters n and T1 can be determined as

n =
7.9826

tr

T
− 0.3954

+ 1.1099. (6.17)

and

T1 =
T

0.0165n2 + 0.5078n + 0.8387
. (6.18)

Then, a different tuning rule for the PID controller is employed.
Simulation and experimental results for the devised self-tuning temperature
control methodology have been presented in (Pfeiffer, 1999; Pfeiffer, 2000)
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6.3 Time-optimal Plug&Control

6.3.1 Methodology

A time-optimal Plug&Control strategy for FOPDT and IPDT processes has
been first proposed in (Visioli, 2003b) and then developed in (Visioli, 2005b).
It is based on the combined use of three-state and PID control to perform
a transition from one set-point value to another, as required by the process
start-up operation, and it is applicable without a priori knowledge of the pro-
cess model parameters, with the exception of the sign of the process gain,
which will be assumed to be positive from now on, without loss of generality.
Basically, the methodology consists of initially setting the controller output
at its upper limit, when the step on the set-point signal is applied. After-
wards, when the process output leaves its previous value, the dead time L of
the process is estimated. Then, from this instant the process parameters are
estimated through a least squares procedure. Once the process model is esti-
mated, a time-optimal control strategy, based on the saturation limits of the
actuator, can be computed and applied. At the same time, the PID controller
(which is not adopted in this phase) can be properly tuned according to a
selected tuning rule. If the process parameters are perfectly estimated, then
at the end of the time-optimal control, the process output would be exactly at
its desired steady-state value. However, estimation inaccuracies are not avoid-
able in practical cases, mainly due to the presence of measurement noise and
numerical approximations. Therefore, at the end of the time-optimal strategy,
when the process output is actually close to its desired value, the controller is
set to the PID mode. In this way, the desired output value is actually attained
and possible subsequent load disturbances can be compensated.

6.3.2 Algorithm

FOPDT processes

Consider a process described by a first-order plus dead-time model:

P (s) =
K

Ts + 1
e−Ls K > 0, T > 0 (6.19)

and denote u as the controller output and y as the process output. Suppose
now that an output transition from y0 to ysp = y0 + y1 is then required to be
performed, starting from time t0 (assume that the process is at an equilibrium
point with u0 := u(t0) and y0 := y(t0)). For the sake of simplicity and without
loss of generality, hereafter it will be assumed y1 > 0.
Then, the following algorithm can be applied. For the sake of clarity it refers
to the ideal noise-free case. Modifications to be carried out in order to cope
with measurement noise are discussed in Section 6.3.3. The sampling time is
denoted by ∆t.
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TOPC algorithm for FOPDT processes

1. Set umax and umin as the maximum and minimum values respectively of
the control variable u during the three-state control and calculate u+ =
umax − u0 and u− = umin − u0.

2. Set flag=1.
3. At time t = t0 set u = umax.
4. When y > y0 set t1 = t and L̂ = t1 − t0 (estimated dead time of the

process).
5. At time t = t1 start the recursive least squares algorithm (Åström and

Wittenmark, 1995, page 51).
6. When |K̂(t) − K̂(t − ∆t)| < ε and |T̂ (t) − T̂ (t − ∆t)| < ε (K̂ and T̂ are

the estimated gain and time constant of the process):
a) Set t2 = t.
b) Set K̂ = K̂(t2) and T̂ = T̂ (t2).
c) Apply a PI(D) tuning rule based on the model identified.
d) Calculate

ts1 = t0 − T̂ ln

⎛
⎜⎜⎝

u+ − y1

K̂
u+

⎞
⎟⎟⎠ . (6.20)

e) If ts1 < t2 then set ts1 = t2, flag=0 and calculate

ts2 = ts1 − T̂ ln

⎛
⎜⎜⎜⎜⎝

y1

K̂
− (u−)

−u+ exp

(
− ts1 − t0

T̂

)
+ u+ − u−

⎞
⎟⎟⎟⎟⎠ . (6.21)

7. If flag=1 then set u = umax when t ≤ ts1 and u = u0+y1/K̂ when t > ts1,
else set u = umin when t ≤ ts2 and u = u0 + y1/K̂ when t > ts2.

8. When t > L̂ + ts1 (if flag=1) or when t > L̂ + ts2 (if flag=0) apply the
PI(D) controller.

It can be seen that the algorithm requires that when a set-point change is re-
quired at time t = t0 the control variable is set to its maximum level u = umax.
Then, when the process output leaves its initial value y0 at time t = t1, the
dead time L of the process is detected. A standard recursive least-squares
algorithm is then applied. When the estimation of the parameters converges
(i.e., when the difference of two successive estimation is less than a predefined
threshold ε) at time t = t2, a model of the process is available. This allows to
tune the PID controller and to determine a time-optimal strategy to attain
the set-point value. In particular, the time interval for which the control vari-
able has to be kept at its maximum value umax in order for the process output
to attain the set-point value in the minimum time, namely, the time instant
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ts1 when the value of the control variable has to be switched from umax to
the final steady-state value u0 + y1/K̂ is determined (Equation (6.20) can be
trivially derived in the context of the optimal control theory (Lewis, 1996)).
It may happen that, because of the large dead time of the process or because
of the large time interval required for the identification procedure to converge,
it follows that ts1 < t2, i.e., that the control variable has been set to its maxi-
mum value for a larger time than requested by the time-optimal control (this
condition determines the setting flag=0). This means that the output, even
in the perfect match case (i.e., even if the process parameters are perfectly
estimated) presents an overshoot. Hence, the control variable must be set im-
mediately at its minimum level and kept at this value for a determined time
interval ts2 − ts1 (the switching time ts2 is also derived in the context of opti-
mal theory). Then, the control variable is set at its (new) steady-state value
u = u0 + y1/K̂. At the end of the (three-state) time-optimal control strategy,
if the process model is perfectly estimated the process output attains its set-
point value.
Since in practical cases this does not occur because of the unavoidable es-
timation inaccuracies, the PID controller is applied to cancel the remaining
steady-state error and to cope with subsequent possible load disturbances.

IPDT Processes

Consider a integrator plus dead-time process:

P (s) =
K

s
e−Ls K > 0, T > 0. (6.22)

The algorithm is very similar to the FOPDT case. The only differences are
the formulae for the determination of the optimal switching times ts1 and ts2
and the final steady-state value of the control variable. Also here the noise-
free case is described for the sake of clarity, leaving the discussion of practical
cases to Section 6.3.3.

TOPC algorithm for IPDT processes

1. Set umax and umin as the maximum and minimum values respectively of
the control variable u during the three-state control and calculate u+ =
umax − u0 and u− = umin − u0.

2. Set flag=1.
3. At time t = t0 set u = umax.
4. When y > y0 set t1 = t and L̂ = t1 − t0 (estimated dead time of the

process).
5. At time t = t1 start the recursive least squares algorithm (Åström and

Wittenmark, 1995, page 51).
6. When |K̂(t) − K̂(t − ∆t)| < ε (K̂ is the estimated gain of the process):

a) Set t2 = t.
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b) Set K̂ = K̂(t2).
c) Apply a PI(D) tuning rule based on the model identified.
d) Calculate

ts1 = t0 +
y1

K̂u+
. (6.23)

e) If ts1 < t2 then set ts1 = t2, flag=0 and calculate

ts2 = −
u+(ts1 − t0) − u−(ts1 − t0) −

y1

K̂
u− . (6.24)

7. If flag=1 then set u = umax when t ≤ ts1 and u = 0 when t > ts1, else set
u = umin when t ≤ ts2 and u = 0 when t > ts2.

8. When t > L̂ + ts1 (if flag=1) or when t > L̂ + ts2 (if flag=0) apply the
PI(D) controller.

The same considerations for the FOPDT case can be applied also in this case.

6.3.3 Practical Considerations

A few technical problems have to be solved in order to effectively apply the
TOPC algorithm in practical cases. First, since real measurements are always
corrupted with noise, the condition y > y0 at step 4 (both for IPDT and
FOPDT processes) has be substituted with y > y0 + NB where NB is the
estimated noise band (Åström et al., 1993) (as already mentioned in Section
5.5.1, this estimation can be performed in a time interval before the applica-
tion of the TOPC technique).
It has also to be noted that it is not strictly necessary for the control con-
straints umin and umax to correspond to the actual physical limits of the
actuator. Actually, more conservative bounds can be selected for various op-
erating reasons or to preserve the linearity of the model.
Then, the recursive least squares algorithm in step 5 has to be initialised. This
can be easily done by selecting a very rough estimate of the process gain and
of the process time constant, denoted respectively as K̂0 and T̂0 (see Section
6.3.5). The value of ε has to be fixed as well. Actually, by fixing it at a low
value the user is confident that the identification phase is ended with a satis-
factory accuracy.
Then, a bumpless transfer (Åström and Hägglund, 1995) has to be applied at
step 8 at the time of switching from the three-state to the PID controller.
Finally, it has to be highlighted that the proposed method could be applied
in the context of feedforward control of set-point steps with “full power” plus
PID control (Pfeiffer, 2000). In other words, for sufficiently large set-point
steps, a control zone has to be defined: inside a narrow band around the set-
point a closed-loop PID control is employed, while outside the control zone
the controller output is set at its maximum value. Note that with such a strat-
egy, the integral time constant of the PID controller can be increased without
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the occurrence of overshoots and yielding at the same time a faster load dis-
turbance rejection. The identification procedure can be skipped if the process
parameters have already been estimated or it can be applied if variations of
the process parameters are detected.

6.3.4 Simulation Results

In order to understand better the TOPC algorithm and to verify its effective-
ness, a few simulation results are presented hereafter.
First, consider the FOPDT process

P1(s) =
1

1.4s + 1
e−0.4s. (6.25)

The initial conditions at t0 = 0 are y0 = 0, u0 = 0. Then, it is set ysp =
y1 = 1 and umax = 1.5 and umin = −1.5. Since no measurement noise is
considered (see Section 6.3.5 for the case where measurement noise is present),
the noise band NB is not employed. Then, it is fixed ε = 10−3. The recursive
least squares algorithm is initialised with K̂0 = 0.5 and T̂0 = 1. Finally, the
following tuning rule has been used for the PI controller (the derivative action
has not been employed) (Rivera et al., 1986):

Kp =
T̂

K̂λ
, λ = max{0.1T̂ , 1.7L̂},

Ti = T̂ .

(6.26)

The result of the application of the Plug&Control strategy is shown in Figure
6.2. It can be seen that the condition y > 0 is verified at time t1 = L̂ = 0.4
and therefore L̂ = 0.4 is fixed (the dead time is correctly estimated). Then,
the recursive least squares algorithm starts. It converges at time t2 = 1.2
with K̂ = 0.98 and T̂ = 1.36. The optimal switching strategy is consequently
determined by calculating ts1 = 1.554 (see Equation (6.20)). Since ts1 > t2,
it is flag=1 and therefore the control variable is kept at the maximum level
u = umax = 1.5 for t < ts1. Then, for ts1 < t < ts1 + L it is set u = y1/K̂ =
1.02. In the meantime, the PI controller parameters are fixed to Kp = 2.04
and Ti = 1.36. Finally, at time t = ts1 + L = 1.954 the PI controller is
applied to the control system and the effects of the slight model mismatch
are compensated. In order to evaluate the performance of the designed PI
controller, a load unitary step disturbance has been applied to the process at
time t = 10.
Overall, a satisfactory performance emerges since the overshoot is negligible
and the PI controller appears to be well tuned (note that other tuning rules
could have been applied).
Now, consider the process

P2(s) =
1

s + 1
e−1.4s, (6.27)
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Fig. 6.2. Result of the application of the TOPC strategy with the FOPDT process
P1(s)

where the dead time is greater than the time constant (a fast response without
overshoot is therefore difficult to obtain with a PID controller). The same
initial conditions and the same design parameters as before are fixed. The
result obtained in this case is shown in Figure 6.3. The dead time L̂ is correctly
estimated at time t = t1 = 1.4. Then, the recursive least squares procedure
starts and it ends at time t = t2 = 1.98 with K̂ = 1.008 and T̂ = 1.015.
Based on the estimated parameters, the optimal switching time ts1 = 1.1
is determined. Since it is ts1 < t2, it is fixed ts1 = t2 = 1.98 and flag=0.
Then, the control variable is set at its minimum value umin = −1.5 and the
optimal switching time ts2 is calculated by means of Expression (6.21). It
results ts2 = 2.093. Thus, at time t = ts2 = 2.093 the control variable is set to
u = y1/K̂ = 0.99 and at time t = ts2 + L̂ = 3.493 the PI controller (which has
been tuned by setting Kp = 0.42 and Ti = 1.0015) is applied. A unitary step
load disturbance has then been applied at time t = 10 in order to verify the
effectiveness of the PI controller designed by means of the TOPC strategy.
It can be seen that, actually, the TOPC strategy produces an overshoot in the
first transient response. This is due to the fact that the process has a significant
time delay and therefore the control variable has been kept at the maximum
level for a too long time interval when the identification procedure converges.
This implies that the control variable has to be set to the minimum level for
a given interval, but this does not suffices to avoid the overshoot (which is in
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Fig. 6.3. Result of the application of the TOPC strategy with the FOPDT process
P2(s)

any case kept at a reasonable level).
In order to verify the effectiveness of the TOPC strategy also for integral
processes, the following process is considered:

P3(s) =
0.1
s

e−s. (6.28)

As for the FOPDT processes, the initial conditions are fixed to t0 = 0, y0 = 0
and u0 = 0. Then, it is set ysp = y1 = 1 and umax = 1.5 and umin = −1.5.
Here, a noise band of NB = 0.01 is set. The recursive least squares procedure
parameters are K̂0 = 0.5 and ε = 10−3. The tuning formula employed for the
PI controller is (Shinskey, 1994)

Kp =
0.9259

K̂L̂
,

Ti = 4L̂.

(6.29)

The result obtained by applying the TOPC strategy is shown in Figure 6.4. It
is t1 = L̂ = 1.06 and t2 = 2.33 (the estimated process parameter is K̂ = 0.1).
By means of Expression (6.23) the optimal switching time is determined as
ts1 = 6.65, where the control variable is set to zero. Then, at time t = ts1+L̂ =
7.71 the PI controller is applied (Kp = 8.71 and Ti = 4.24) and its performance
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Fig. 6.4. Result of the application of the TOPC strategy with the IPDT process
P3(s)

in the load disturbance rejection task is evaluated at time t = 15.
It appears that a time optimal transition is achieved and, at the same time,
the PI controller is tuned satisfactorily.
As a last illustrative example, the process

P4(s) =
1
s
e−s (6.30)

is considered (note that the value of the dead time is significant with respect to
the time constant). The same design parameters of the previous case (process
P3(s)) are employed. The result obtained is shown in Figure 6.5. It is t1 =
L̂ = 1.0 and t2 = 1.13 (the estimated process parameter is K̂ = 1.012). The
optimal switching time is calculated as ts1 = 0.66. Since it is ts1 < t2, ts1
is fixed equal to t2 and then the optimal switching time ts2 is calculated by
means of Expression (6.24). It results ts2 = 1.601. Thus, the control variable
is set to zero for ts2 < t < ts2 + L̂ before applying the PI controller, whose
parameters have been set to Kp = 0.915 and Ti = 4.
It is worth underlying that the resulting overshoot is due to the high value
of the dead time of the process, for which the control variable is set to its
maximum value umax for a too long time interval.



6.3 Time-optimal Plug&Control 157

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

time

pr
oc

es
s 

va
ri

ab
le

0 5 10 15 20 25 30 35 40 45 50
2

1.5

1

0.5

0

0.5

1

1.5

time

co
nt

ro
l v

ar
ia

bl
e

Fig. 6.5. Result of the application of the TOPC strategy with the IPDT process
P4(s)

6.3.5 Experimental Results

Level Control

A few experiments related to the application of the TOPC strategy to a level
control problem are presented hereafter. Results have been obtained with the
laboratory setup described in Section A.1. In all cases it has been set ε = 10−3

and the following tuning rule (Skogestad, 2003) has been selected:

Kp =
0.3T̂

K̂L̂
Ti = min{T̂ , 8L̂}. (6.31)

Note that, with respect to the original tuning rule in (Skogestad, 2003), here
the proportional gain Kp has been conveniently detuned in order to take into
account system nonlinearities and the unavoidable unmodelled dynamics.
In the first experiment, the set-point value has been fixed at ysp = 3 V and
it has been fixed umax = 4.5 V and umin = 0 V. For the first two seconds of
the experiment the control variable has been set to zero in order to estimate
the noise band and to measure the value y0 = 0.68 V (note that u0 = 0 V
and therefore u+ = umax = 4.5 V and u− = umin = 0 V). Thus, the value
of y1 is easily determined as ysp − y0 = 2.32 V. Then, at time t = t0 = 2 s
the control variable is set to u = umax (see step 3 of the TOPC algorithm
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for FOPDT processes) and, subsequently, the dead time is estimated at time
t = t1 = 3.68 s as L̂ = 1.68 s (see step 4).
The recursive least squares algorithm (initialised with K̂0 = 1 and T̂0 = 10)
converges at time t2 = 6.19 s with the gain and the time constant estimated
as K̂ = 0.94 and T̂ = 8.76 (see steps 6(a) and 6(b) of the TOPC algorithm).
The resulting value of ts1 is 6.96 s (see Expression (6.20)). Since ts1 is greater
than t2, then there is no need to set u = umin for a given time interval. Hence,
at time t = ts1 = 8.96 s it is set u = y1/K̂ = 2.47 V for a time interval of
1.68 s and then the PI controller is applied (it results Kp = 1.66 and Ti = 8.76,
see Expression (6.31)). The resulting process output and control variable are
plotted in Figure 6.6. Note that at time t = 100 s and t = 200 s a (software)
step disturbance of -0.5 V has been applied to the control variable in order to
test the designed controller.
A satisfactory overall performance appears. Note that at time ts1 + L̂ the pro-
cess output has not attained the desired steady-state value (as it would be in
the ideal case) because of the unavoidable modelling inaccuracies. Indeed, it
is the PI controller that immediately compensates the residual system error.
Actually, it can be seen that no overshoot is practically present and the load
disturbances are rejected with a low settling time, demonstrating that the PI
controller is well tuned.
In order to verify what happens with a lower set-point value, the case with
ysp = 2 V (and umax = 4.5 V) has been then considered (note that u0 = 0 V
and t0 = 2 s as before). In this case, it results y0 = 0.60 V, y1 = 1.4 V,
t1 = L̂ = 1.44 s and t2 = 8.85 s (with the estimated parameters K̂ = 0.52
and T̂ = 4.64). Since the first switching time ts1 = 6.23 s results to be lower
than t2, the control variable is immediately set to umin = 0 until the time
t = ts2 = 10.03 s (see step 6(e) of the TOPC algorithm) and then set to 2.69 V
for a time interval equal to L̂ before the PI controller is applied (Kp = 1.84
and Ti = 4.64). Results are shown in Figure 6.7. Note that an overshoot is
present as expected, and the tuning of the PI controller is again satisfactory,
as demonstrated by the load disturbance rejection performance.
In any case, it appears that if a limitation of the overshoot is required it is
sensible to select lower values of umax for lower values of ysp. For this rea-
son, the case where ysp = 2 V and umax = 3 V (umin = 0 V) has been also
considered. The result is shown in Figure 6.8, where t0 = 2 s, y0 = 0.64 V,
y1 = 1.36 V, t1 = L̂ = 1.76 s, t2 = 9.64 s, K̂ = 0.88, T̂ = 9.11, ts1 = 6.59 s,
ts2 = 8.52 s, Kp = 1.76 and Ti = 9.11.
As expected, it appears that the reduction of the overshoot is obviously paid
with a higher rise time. Once again, however, the (automatically) designed PI
controller achieves a satisfactory performance.
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Fig. 6.6. Results of the TOPC algorithm for level control task with ysp = 3 V and
umax = 4.5 V
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Fig. 6.7. Results of the TOPC algorithm for level control task with ysp = 2 V and
umax = 4.5 V
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Fig. 6.8. Results of the TOPC algorithm for level control task with ysp = 2 V and
umax = 3 V

Temperature Control

The TOPC strategy has been also applied to a temperature control task by
means of the experimental setup described in Section A.2. As in the case of
level control, it has been set ε = 10−3 and the PI controller is tuned according
to the rule (6.31).
For the first experiment the values ysp = 3.5 V and umax = 4 V, umin = 0 V
have been selected. As for the level control task, the first two seconds of the
experiment (i.e., t0 = 2 s) have been adopted (by setting u0 = 0 V) to measure
the noise band and the value of y0 = 0.58 V (thus, y1 = ysp − y0 = 2.92 V).
Then, the TOPC algorithm is applied by initialising K̂0 = 1 and T̂0 = 100.
The estimated dead time is L̂ = 26.20 s and the convergence of the recursive
least squares algorithm occurs at time t2 = 1351.7 s with K̂ = 1.16 and
T̂ = 1308.4. The switching time ts1 results to be 1300.4 s and therefore the
second switching time is calculated as ts2 = 1381.0 s. The control variable
is therefore set to zero for a period of ts2 − t2 = 29.3 s, before being set
to y1/K̂ = 2.52 V for a period of L̂ = 26.20 s. Then, the PI controller
(Kp = 12.91 and Ti = 209) is applied and in order to test it, a (software)
load step disturbance of -0.5 V has been applied at time t = 2000 s. The
resulting process output and control variable are plotted in Figure 6.9. Note
that the process is clearly lag-dominant, but the adopted tuning rule, which
avoids the pole-zero cancellations, guarantees a somewhat fast load rejection.
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Note also that a very low overshoot occurs.
For a second experiment, the values ysp = 3 V and umax = 4.5 V have been
selected. Being y0 = 0.58 V it results y1 = 2.42 V. Then, the dead time is
estimated as L̂ = 25.35 s and the gain and time constant estimation ends at
time t2 = 1250.1 s with K̂ = 1.13 and T̂ = 1301.5. It is therefore ts1 = 840.9 s
(which is less than t2) and ts2 = 1585.4 s. The PI controller is then tuned
with Kp = 13.65 and Ti = 202.8. Results are shown in Figure 6.10, where the
expected overshoot appears as well as the satisfactory tuning of the controller,
as shown by the load disturbance rejection performance. Note that, although a
significant overshoot occurs, the process variable is still far from its saturation,
as expected since a low value of the set-point (with respect to the value of
umax) has been selected.
To clarify better this fact, in the third experiment the value of ysp has been
raised to 4 V, while the value of umax has been kept to 4.5 V. The result is
reported in Figure 6.11, where it is y0 = 0.49 V, y1 = 3.51 V, t1 − t0 = L̂ =
23.56 s, t2 = 1163.6 s, K̂ = 1.16, T̂ = 1331.5, ts1 = 1485.9 s, Kp = 14.60
and Ti = 188.4. In this case there is no need of setting the control variable
to zero for a determined period and the process output attains its set-point
value monotonically. As in the previous cases, the load disturbance rejection
is effective, demonstrating a satisfactory PI controller design.
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Fig. 6.9. Results of the TOPC algorithm for temperature control task with ysp =
3.5 V and umax = 4 V
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Fig. 6.10. Results of the TOPC algorithm for temperature control task with ysp =
3 V and umax = 4.5 V
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Fig. 6.11. Results of the TOPC algorithm for temperature control task with ysp =
4 V and umax = 4.5 V
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6.3.6 Discussion

From the results presented it appears that the time-optimal Plug&Control
strategy is effective in providing a fast commissioning of the control loop
when a tight performance is not required. Indeed, the technique is suitable
for those processes where the dominant dynamics is not of high order and
where possibly somewhat large overshoots are allowed (at least in the start-
up phase of the process). It is worth stressing, however, that by a suitable
choice of the design parameters (namely, the maximum and minimum level of
the control variable during the three-state control phase) the overshoot can
be significantly reduced (at the expense of the rise time). In fact, it has been
shown that the design parameters have a clear physical meaning and techni-
cal problems can be solved in a practical context by exploiting a reasonable
knowledge of the plant.
Finally, it has to be noted that, instead of the recursive least squares algo-
rithm, a batch least squares algorithm (Sung et al., 1998) can be applied for
the identification purpose (Visioli, 2003b). Although in this case the method-
ology is more capable of coping with a high-order dynamics, it has the dis-
advantage that the user has to select the part of the transient for which data
are collected for the estimation of the parameters. Although this choice some-
how allows the handling of the trade-off between estimation accuracy and the
resulting overshoot, it might not be intuitive to the user.

6.4 Conclusions

In this chapter different Plug&Control strategies have been presented. It has
been shown how this approach is very promising since, provided that the
methodology is applied in a suitable context, it is capable of providing a fast
and effective design of the control loop. Obviously, this feature is more relevant
in large plants, when there are many (simple) loops to tune.
It is believed that in the future new techniques in this framework can be
devised since there is much room for the improvement of the performance,
especially for high-order processes.
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Identification and Model Reduction Techniques

7.1 Introduction

In this chapter, the issue of the system identification, in the context of PID
tuning and control, is addressed. Rather than present an exhaustive review of
the existing methodologies for the estimation of a (parametric or non para-
metric) model of the process, which would be a very huge task, the aim of
the following sections is to point out possible issues that might arise when
selecting the identification procedure. For this purpose, some techniques are
presented and their main features are highlighted. In particular, techniques
based on the evaluation either of an open-loop step response or of a relay feed-
back test are considered, in order to estimate the parameters of a FOPDT or
a SOPDT transfer function. This choice is motivated by the fact that methods
of this kind are the most adopted in practical cases because of their simplic-
ity. The analysis focuses on self-regulating processes which do not exhibit an
oscillatory dynamics.
In addition, the issue of designing a PID controller when a high-order model
of the process is available is addressed. In particular, two approaches in the
Internal Model Control (IMC) framework (Morari and Zafiriou, 1989) are
analysed and discussed. In the first, the (high-order) controller that results
from considering the high-order process model is reduced through a Maclaurin
series expansion in order to obtain a PID controller. In the second, the process
model is first reduced (different techniques are considered for this purpose) in
order to naturally obtain a PID controller.

7.2 FOPDT Systems

The great majority of PID tuning rules actually assume that a FOPDT model
of the process is available, namely the process is described by the following
transfer function:
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P (s) =
K

Ts + 1
e−Ls T > 0, L > 0 (7.1)

where K is the estimated gain, T is the estimated time constant and L is
the estimated (apparent) dead-time. This is motivated by the fact that many
processes can be described effectively by this dynamics and, most of all, that
this suits well with the simple structure of a PID controller.
Different methods have been therefore proposed in the literature to estimate
the three parameters by performing a simple experiment on the plant. They
are typically based either on an open-loop step response or on a closed-loop
relay feedback experiment.

7.2.1 Open-loop Identification Techniques

The identification techniques based on an open-loop experiment generally
derive the FOPDT transfer function parameters based on the evaluation of
the process step response (often denoted as the process reaction curve). This
can be done in many ways. Some techniques proposed in the literature are
explained hereafter with the aim of highlighting their main features.

The Tangent Method

The tangent method consists of drawing the tangent of the process response
at the inflection point. Then, the process gain can be determined simply by
dividing the steady-state change in the process output y by the amplitude of
the input step A. Then, the apparent dead time L is determined as the time
interval between the application of the step input and the intersection of the
tangent line with the time axis. Finally, the value of T +L is determined as the
time interval between the application of the step input and the intersection of
the tangent line with the straight line y = y∞ where y∞ is the final steady-
state value of the process output. Alternatively, the value of T + L can be
determined as the time interval between the application of the step input and
the time when the process output attains the 63.2% of its final value y∞. From
this value the time constant T can be trivially calculated by subtracting the
previously estimated value of the time delay L. The method is sketched in
Figure 7.1.
It is worth stressing that the method is based on the fact that it gives exact
results for a true FOPDT process. The main drawback of this technique is that
it relies on a single point of the reaction curve (i.e., the inflection point) and
that it is very sensible to the measurement noise. In fact, the measurement
noise might cause large errors in the estimation of the point of inflection and
of the first time derivative of the process output.

The Area Method

A technique that is more robust to the measurement noise is the so-called area
method. By taking into account that the process gain K can be determined
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Fig. 7.1. Application of the tangent method for the estimation of a FOPDT transfer
function

as for the tangent method, it consists of first calculating the area between the
process output and the straight line y = y∞, namely:

A1 :=
∫ ∞

t0

(y∞ − y(t))dt (7.2)

where t0 is the time instant of the input step change. Then, the value of T +L
can be determined by the following expression:

L + T =
A1

K
. (7.3)

Subsequently, the area A2 between the process output and the time axis in
the time interval from t0 to T + L is evaluated, namely,

A2 :=
∫ T+L

t0

(y(t) − y0)dt (7.4)

where y0 is the initial process output steady-state value. Finally, the values
of T and L are determined by means of the following expressions:

T =
eA2

K
L =

A1 − KT

K
(7.5)

The procedure is depicted in Figure 7.2. It is worth noting that the previous
expressions are derived by considering the response of a FOPDT system. In
other words, as for the tangent method, a perfect parameter estimation occurs
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Fig. 7.2. Application of the area method for the estimation of a FOPDT transfer
function

if the process has exactly a FOPDT dynamics. In any case it is also possi-
ble to apply it for (moderately) undershooting, overshooting or oscillatory
responses, provided that the part of y(t) that is less than y0 be truncated to
y0 and the part of y(t) that is greater than y∞ be “mirrored” with respect to
y∞ (Leva et al., 2001).
Being based on the calculus of integrals, this approach is more relevant from
the computational point of view (the final result is difficult to derive by hand)
but has the remarkable feature of being much more robust to the measurement
noise than the tangent method. However, it has a drawback in the possible
determination of a negative value of the time delay L when the process ex-
hibits a nonlinear lag-dominant dynamics.
Consider for example the nonlinear process described by the following differ-
ential equation (note that this can be a model of a tank system where the
process variable y is the fluid level, the manipulated variable u is the inflow
and Qo = 1.2

√
y is the outflow):

ẏ(t) =
1
16

(u(t − 1) − 1.2
√

y). (7.6)

The unitary step response is plotted in Figure 7.3 (note that there is no
measurement noise). The straightforward application of the area method gives
the following results: K = 0.69, T = 18.8 and L = −0.15. Obviously, if
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Fig. 7.3. Example of a step response for which the application of the area method
gives a negative dead time

the process is not lag-dominant, a significant underestimation of the dead
time results in any case. This might be a problem from the point of view of
the tuning of the PID parameters because a more aggressive controller than
expected might result.

Two-points-based Method

A method that is based on the estimation of two time instants of the reaction
curve has been proposed in (Sundaresan and Krishnaswamy, 1978) (it is also
reported in (Seborg et al., 2004)). It consists in determining the time instants
t1 and t2 when the process output attains 35.3% and 85.3% of its final steady-
state respectively. Then, the dead time and the time constant are calculated
by means of the following formulae:

T = 0.67(t2 − t1) L = 1.3t1 − 0.29t2. (7.7)

The gain of the process is determined as in the previous methods. The pre-
vious formulae have been found, by considering many data sets, in order to
minimise the difference between the experimental process response and the
model response. It is worth noting that the method is very simple (indeed, it
can be applied by hand easily).
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This technique, in addition to the problem of being sensible to the measure-
ment noise in the estimation of the two times t1 and t2, suffers from the same
problem as the area method. Indeed, if it is applied to the same transient
response obtained by Process (7.6) (see Figure 7.3), it results in K = 0.69,
T = 19.69 and L = −0.64. Thus, the same considerations for the area method
apply also in this case. As a consequence, care should be devoted in choosing
the appropriate context for applying these techniques.

Least-squares-based (with Model Reduction) Methods

A possible way to obtain a FOPDT model is to obtain first a high-order model
and then to reduce it to FOPDT form. A method that can be exploited in this
context has been proposed in (Sung et al., 1998). The first step is to estimate
an arbitrarily high-order transfer function (denoted by G(s)) by means of a
least-squares approach. A remarkable robustness with respect to measurement
noise is achieved by considering the integrals of the input and output signals
instead of their derivatives. Then, a low-order model can be derived by apply-
ing a model-reduction algorithm. A salient feature of the methodology is that
it does not require any special input to the process, but it can be applied in
different operating conditions.
Here the case where a step input is applied to the process and a FOPDT
model is determined starting from the obtained high-order model is consid-
ered. While the value of the gain K can be found as usual by dividing the
steady-state change in the process output y by the amplitude of the input
step, again a least-squares-based approach is employed in order to find the
time constant of the process model (7.1) that minimise the difference between
the magnitude of the frequency response of the high-order model and of the
FOPDT one. Formally, the value of T that satisfies the following equation is
determined as:

|G(jωi)| =
K√

T 2ω2
i + 1

, 0 < . . . < ωi < . . . < ωu (7.8)

where ωu is the ultimate frequency of G(s). Finally, the apparent dead time
of the process is determined as the value that gives the same phase angle (i.e.,
−π) of the high-order model at the ultimate frequency ωu:

L =
π − arctan(Tωu)

ωu
. (7.9)

It appears that this method requires much more computational effort than
the previous ones (note that ωu has to be calculated since it is not available).
Critical choices in this context are the selection of the order (and of the
relative order) of the rational transfer function G(s) and the portion of the
step response to be considered (it is obviously meaningless to use data after
the steady-state has been attained). For the first issue, by taking into account
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that eventually a FOPDT model is determined, a sensible choice is to select a
fourth-order transfer function with a relative order equal to one (this means
that the dead time term is approximated by three zeros and three poles). For
the second issue, it is sufficient to consider the settling time at 2% of the
steady-state value.
It is worth noting at this point that other model-reduction methodologies
(that result in a rational transfer function) will be presented in Section 7.5.

Method Based on Laguerre Functions

Laguerre functions are a set of complete orthonormal functions defined as:

l1(t) =
√

2pe−pt

l2(t) =
√

2p(−2pt + 1)e−pt

...

li(t) =
√

2p

[
(−1)i−1

(2p)i−1

(i − 1)!
ti−1 + (−1)i

(i − 1)(2p)i−2

(i − 2)!
ti−2+

(−1)i−1
(i − 1)(i − 2)(2p)i−3

2!(i − 3)!
ti−3 + · · · + 1

]
e−pt

(7.10)

where p > 0 is called the time scaling factor. In the context of system iden-
tification, the property that an arbitrary function g(t) can be expanded with
respect to a set of functions that is orthonormal and complete over the inter-
val (0,∞) can be exploited. In particular, if g(t) is the unit impulse response
of a process, it can be written as

g(t) = c1l1(t) + c2l2(t) + · · · + cili(t) + · · · (7.11)

where the ci’s are the coefficients of the expansion. By applying the Laplace
transform we obtain

G(s) = c1L1(s) + c2L2(s) + · · · + ciLi(s) + · · · (7.12)

where

Li(s) =
√

2p(s − p)i−1

(s + p)i
i = 0, 1, . . . (7.13)

are often referred as the Laguerre filters. In theory, the expansion expresses in
Equation (7.11) requires an infinite number of terms to converge to the true
impulse response. However, an arbitrarily good approximation can be obtained
by truncating the series after N terms. In any case, from Expression (7.13)
it can be easily deduced that the estimated transfer function has coincident
poles.
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Starting from the measured step response y(t), the coefficients of the expansion
can be calculated as:

c1(t) = p
∫ Ts

0 y(t)l1(t)dt + ȳl1(Ts)

c2(t) = 2p
∫ Ts

0
y(t)l1(t)dt + p

∫ Ts

0
y(t)l2(t)dt + ȳl2(Ts)

...

ci(t) = 2p
∫ Ts

0
y(t)l1(t)dt + 2p

∫ Ts

0
y(t)l2(t)dt + . . . + p

∫ Ts

0
y(t)li(t)dt + ȳli(Ts)

(7.14)
where Ts is the time at which the process attains the steady-state and ȳ is the
steady-state value. The choice of the time scaling factor p (i.e., of the location
of the approximating system poles) affects the accuracy of the approximation,
in the sense that a poor choice of p requires more terms in order to provide
a desired model accuracy. For this reason, methodologies for a sound selec-
tion of p have been investigated (Wang and Cluett, 1994). In particular, it is
proposed to search for the optimal value of p (in the sense that it gives the
best approximation for a given value of N) in the interval [pmin, pmax], where
pmin = 4/Ts and pmax = 5pmin if N ≤ 4 and pmax = 10pmin if N > 4. This
interval is then discretised and for any value of p the Laguerre coefficients cN

and cN+1 are determined by means of Formulae (7.14). The values of p for
which cNcN+1 = 0 are selected as possible candidates. Among them, the one
that produces the maximum value of

∑N
i=1 c2

i is selected as the best one.
A detailed analysis of the use of Laguerre functions in this context can be
found in (Wang and Cluett, 2000). It is shown that this modelling technique
based on the step response has nice statistical properties: it is very robust to
the measurement noise and a simple strategy for the pretreating of the data
can be implemented in order to cope with disturbances.
In any case, it has to be stressed that the technique requires a somewhat
computational effort and the high-order model that results has to be subse-
quently reduced to a FOPDT model. The method presented in the previous
subsection (or others presented in Section 7.5) can be used for this purpose.
By applying a similar reasoning, the unique user-chosen parameter N can be
chosen as equal to four.
Finally, it is worth noting that a closed-loop approach based on the use of
Laguerre functions and a least-squares technique has been proposed in (Park
et al., 1997).

Optimisation-based Method

Another technique that is worth to being considered is to estimate the three
transfer function parameters K, T and L by solving the following optimisation
problem:

min
K,T,L

∫ ∞

0

|y(t) − ym(t)|dt (7.15)
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where y(t) denotes the experimental step response and ym(t) denotes the
model step response. In other words, the model parameters are searched in
order to minimise the difference between the experimental step response and
the model step response.
In order to solve the posed optimisation problem, genetic algorithms (Mitchell,
1998) can be employed. In any case, obviously, the computational effort is
significant and this is the major drawback of this method.

7.2.2 Closed-loop Identification Techniques

The closed-loop identification techniques employed in industrial settings typ-
ically rely on a relay-feedback experiment. The initial idea of the use of the
relay-feedback controller (Åström and Hägglund, 1984) is to evaluate the ob-
tained process output oscillation (see Section 1.3) in order to obtain a non-
parametric model of the process, namely its ultimate gain Ku and the ultimate
frequency ωu, in analogy with the original idea of the ultimate sensitivity ex-
periment of Ziegler–Nichols (Ziegler and Nichols, 1942), where the control
system is led to the stability limit.

However, recently, different techniques for the determination of a FOPDT
parametric model based on a relay-feedback experiment have been also de-
vised. A few of them are presented hereafter, again with the aim of highlight
possible issues that might arise when they are applied in a practical context.

Standard Relay-feedback Method

The original relay-feedback experiment proposed in (Åström and Hägglund,
1984) involves the use of a standard symmetrical relay in order to generate
a persistent oscillatory response of the process output. Denoting by h the
amplitude of the relay and by A the amplitude of the output oscillations, the
value of the ultimate gain can be derived, by applying the describing function
theory, as:

Ku =
4h

πA
. (7.16)

The ultimate period Tu is simply the period of the obtained output oscillation.
Based on these two values, many PID tuning rules can be applied (O’Dwyer,
2006). Only the amplitude h of the relay has to be selected by the user. This
should be done in order to provide an output oscillation of sufficient amplitude
to be well distinguished from the measurement noise, but at the same time it
has not to be too high so that the process is perturbed as less as possible (and
the normal production is not interrupted). Indeed, it is worth stressing that
the estimation of the output oscillation is sensible to the measurement noise
and therefore some filtering technique has to be applied (Wang et al., 1999c)
(this is a drawback with respect to the open-loop least-squares-based methods
considered in the previous section). In addition to having just one parameter to
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be selected by the user and to be performed in closed-loop, so that the process
is kept close to the set-point value, the main advantage of this identification
technique is that a short time is necessary to run the test (with respect to
the use of a pseudo-random binary sequence (PBRS) (Ljung, 1996)). Further,
possible load disturbances that might occur during the experiment can be
easily detected by the change to asymmetric pulses in the control variable.
In any case, the obtained values of the ultimate gain and ultimate period
are approximated, because of the adoption of the describing function theory
and the estimation may not be accurate enough for some applications, for
example when the process exhibits a long dead time (Li et al., 1991). In
order to improve the estimation of the actual values of Ku and Tu, different
methods have been proposed in the literature (see, for example, (Majhi and
Atherton, 2000; Atherton, 2000)). In any case, if it is desired to implement
a model-based controller, the knowledge of a transfer function is required.
A FOPDT transfer function can be derived by employing the following two
relations, which can be derived by calculating the ultimate gain and period
for Process (7.1) (Luyben, 1987):

T =
tan(π − Lωu)

ωu
, (7.17)

T =

√
(KKu)2 − 1

ωu
. (7.18)

It can be noted that there are two equations for three parameters. Thus, the
gain of the process has to be estimated in an other way. Then, Equation
(7.18) can be employed to estimate the value of T and subsequently the value
of L can be determined by means of Equation (7.17). Alternatively, the dead
time of the process can be estimated in an other way (for example at the
beginning of the experiment, with considerations analogous to those made for
the open-loop experiments) and then the time constant T and the process
gain K are subsequently calculated. However, in this case the resulting time
constant and process gain might incorrectly result to be negative (Vivek and
Chidambaram, 2005a) and therefore this approach should be avoided.
In order to cope with the inaccuracies due to the presence of the describing
function approximation, in (Yu, 1999) it is proposed to substitute Equation
(7.17) with the following one:

T =
π

ωu ln(2e
L
T − 1)

. (7.19)

Alternative Calculation of the FOPDT Parameters

An alternative way of identifying the FOPDT transfer function by means of
a symmetrical relay-feedback experiment has been proposed in (Vivek and
Chidambaram, 2005a). It consists of first evaluating the integral
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y(s1) =
∫ ∞

0

y(t)e−stdt (7.20)

for s1 = 8/ts, where ts is the time at which three repeated cycles of oscillations
appear in the process output after the initial transient has ended. Analogously,
the integral

u(s1) =
∫ ∞

0

u(t)e−stdt (7.21)

is also evaluated for s1 = 8/ts. With the resulting values, the following equa-
tion can be posed:

K

Ts1 + 1
e−Ls1 =

y(s1)
u(s1)

. (7.22)

Then, the frequency response of the process transfer function can be written
as

P (jωu) =
y(jωu)
u(jωu)

=
c1 − jd1

c2 − jd2
(7.23)

where
c1 =

∫ Tu

0
y(t) cos(ωut)dt

d1 =
∫ Tu

0 y(t) sin(ωut)dt

c2 =
∫ Tu

0
u(t) cos(ωut)dt

d2 =
∫ Tu

0
u(t) sin(ωut)dt

(7.24)

where ωu is the frequency of the oscillation obtained in the process output
and Tu = 2π/ωu. The values of c1, d1, c2 and d2 can be evaluated numerically
based on the process input and output data u(t) and y(t) obtained from the
relay test. Thus, Equation (7.23) can be rewritten as

P (jωu) = p + jq (7.25)

where

p =
c1c2 + d1d2

c2
2 + d2

2

q =
d2c1 − d1c2

c2
2 + d2

2

. (7.26)

By taking into account that

P (jωu) =
K

Tjωu + 1
e−Ljωu (7.27)

it can be easily deduced that

p + jq =
K(cos(Lωu) − j sin(Lωu))

T jωu + 1
. (7.28)

Finally, by equating the real and imaginary parts, it can be written
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p − qωuT − K cos(Lωu) = 0, (7.29)

q + pωuT + K sin(Lωu) = 0. (7.30)

The three process parameters can be obtained by means of Equations (7.22),
(7.29) and (7.30). It is worth stressing that a numerical solution has to be de-
rived. In any case the merit of the methodology is that all the three parameters
can be found with a single relay test.

Use of an Asymmetrical Relay

If a biased relay is adopted for the experiment, the process gain K can be
determined by using the process input and output data u(t) and y(t) according
to the expression (Shen et al., 1996):

K =

∫ 2π

0
e(t)d(ωut)∫ 2π

0
u(t)d(ωut)

. (7.31)

Then, the other process parameters T and L can be calculated by means of
Equations (7.29) and (7.30), for which an analytical solution exists (Srinivasan
and Chidambaram, 2003). Obviously, in this case both the up-amplitude and
the down-amplitude of the relay have to be selected. Further, the use of an
asymmetrical relay represents a sort of disturbance to the process since it
cause the operating point to drift.

Use of a Relay with Hysteresis

As already mentioned, the relay-feedback test is sensitive to the measurement
noise. The easiest way to reduce the influence of the noise is to employ a
relay with a hysteresis, whose width is usually chosen as twice the noise band.
Denoting again by A and Tu the amplitude and the period of the resulting
oscillation, and assuming that the process gain K is known, the process time
constant can be determined as (Wang et al., 1997):

T =
1
2
Tu

(
ln

hK + A

hK − A

)−1

(7.32)

where h is the amplitude of the (symmetrical) relay. Then, the dead time is
estimated as

L =
1
2
Tu

(
ln

hK − ε

hK − A

)(
ln

hK + A

hK − A

)−1

(7.33)

where ε is the width of the hysteresis. It is worth stressing that the method
requires a previous estimation of the process gain.
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Use of a Biased Relay with Hysteresis

The identification of a FOPDT process can be performed also by means of a
biased relay (Wang et al., 1997) (see Figure 7.4). By denoting the periods and
the amplitudes of oscillations as shown in Figure 7.5, the process parameters
can be determined as follows. First, the process gain is calculated again as:

K =

∫ Tu1+Tu2

0
y(t)dt∫ Tu1+Tu2

0 u(t)dt
. (7.34)

Then, the normalised dead time Θ = L/T is obtained as:

Θ = ln
(h + h0)K − ε

(h + h0)K − Au
(7.35)

or

Θ = ln
(h − h0)K − ε

(h + h0)K + Ad
. (7.36)

Then, the process time constant can be calculated as

T = Tu1

(
ln

2hKeΘ + h0K − hK + ε

h0K + hK − ε

)−1

(7.37)

or

T = Tu1

(
ln

2hKeΘ − h0K − hK + ε

h0K − hK − ε

)−1

. (7.38)

The dead time is finally determined by simply calculating L = ΘT . As already
mentioned for the simple asymmetrical relay, the technique suffers from the
drawback of drifting the process away from the operating point.

0

h+h0
u

e

h h

Fig. 7.4. The biased relay
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Tu2

Fig. 7.5. Illustrative example of the use of a biased relay

Method Based on the Output Curve Shape

In the previous sections, it has been shown how to estimate a FOPDT transfer
function starting from the data collected after a unique relay-feedback test.
However, it has been recognised by many author that for some processes, in
particular those with a large dead time, the knowledge of just the ultimate
gain and of the ultimate frequency is actually insufficient for the effective
design of the (PID) controller.
Indeed, it has been shown that the shape of the output oscillation depends on
the process dynamics and analytical expressions are derived in (Panda and Yu,
2003). This fact has been exploited in (Luyben, 2001b), where the curve shape
obtained by a standard (not biased and without hysteresis) relay is analysed
in order to derive a FOPDT model. In particular, the following algorithm is
proposed (see Figure 7.6), where A denotes, as usual, the amplitude of the
oscillations.

1. Determine Ku = 4h/(πA), where h is the relay amplitude, and evaluate
the ultimate period Tu (equivalently, the ultimate frequency ωu).

2. Draw a vertical line passing through the peak in the curve and denote the
corresponding time as t2.

3. Draw a horizontal line at A/2.
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Fig. 7.6. Illustration of the method based on the output curve shape

4. Draw a vertical line passing through the intersection of the curve with the
line drawn at step 3 and denote the corresponding time as t1.

5. Set b = t2 − t1.
6. Calculate a curvature factor F as F = 4b/Tu. This actually indicates if

the curve has a shape more similar to a triangle (this results when the
dead time is small with respect to the time constant) or more similar to
a rectangle (when the dead time is big).

7. Calculate R := L/T by means of the following expression (determined by
interpolating results for different processes):

ln

(
L

T

)
= −5.2783 + 12.7147F − 9.8974F 2 + 2.6788F 3. (7.39)

8. Substitute L = RT in the following equation

−ωuL − arctan(ωuT ) = −π. (7.40)

and solve iteratively for T . Then, determine L = RT .
9. Determine K by means of the equation

K√
1 + (ωuT )2

=
1

Ku
. (7.41)

The technique has the great merit of exploiting, in a simple way, the shape
of process variable oscillation. Possible drawbacks of the method are its sensi-
tivity to the noise, the somewhat significant computational effort and a possi-
bly inaccurate estimation of the process gain (for example, for the noise-free
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step response of the process P (s) = 1/(s + 1)2e−s the results are K = 2.97,
T = 5.71 and L = 1.29). Thus, an appropriate tuning procedure should be
applied in this context (Scali et al., 1999).
It is worth stressing that the idea of exploiting the shape factor has been
developed in (Thyagarajan and Yu, 2003; Panda and Yu, 2005) where the
model structure (FOPDT or SOPDT) is also conveniently selected based on
the shape of the obtained oscillation.

7.3 SOPDT Systems

Even if the majority of the existing tuning rules are based on FOPDT transfer
functions of the process, there are also many rules that relies on the estimation
of SOPDT transfer functions (Panda et al., 2004), as they include overdamped,
critically damped and underdamped systems and the presence of the two poles
can be handled by the two zeros of the controller.
Usually, such a transfer function can be expressed in two ways, namely:

P (s) =
K

(T1s + 1)(T2s + 1)
e−Ls T1 > T2 > 0, L > 0 (7.42)

or, alternatively,

P (s) =
K

T 2s2 + 2ξT s + 1
e−Ls T > 0, ξ > 0, L > 0. (7.43)

It has to be noted that Expression (7.43) is more general than Expression
(7.42) since it includes the cases of both real and complex conjugate poles
(when ξ ≥ 1 and ξ < 1 respectively), while in (7.42) the poles are assumed
to be real. However, this latter case is highlighted since it is significant in the
context of PID control, as many tuning rules assume that the PID controller
is in a series form and the derivative time constant is selected in order to
cancel the pole associated with the smallest time constant (see for example
(Skogestad, 2003)). Further, processes that present an oscillatory dynamics
are rarely found in industrial settings, although the case is of concern when
a closed-loop dynamics is considered (for example, the secondary loop of a
cascade control system, see Section 9.2.1).
Note also that, for the sake of simplicity, it has been assumed that the pro-
cess has no zeros. This fact is in any case briefly addressed hereafter. As
for the estimation of a FOPDT model, both (step-based) open-loop identifi-
cation techniques and (relay-feedback-based) closed-loop identification tech-
niques are addressed.

7.3.1 Open-loop Identification Techniques

As for FOPDT models, different techniques have been devised for the esti-
mation of a SOPDT transfer function by evaluating open-loop process step
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responses (not necessarily for the purpose of tuning a PID controller). Some
of them are reviewed hereafter, always with the aim of highlighting their prac-
tical issues in the context of PID control.

Two-points-based Method

The method described in (Åström and Hägglund, 1995) is based on the nu-
merical solution of two equations that, in case of an overdamped (monotonic)
step response, imposes that the experimental step responses and that provided
by Model (7.42) matches exactly when the process output attains 33% and
67% of its final value. The (apparent) dead-time L is previously determined
by applying the tangent method (i.e., by considering the intersection between
the baseline and the tangent line of the response in its inflection point), while
the process gain K is previously calculated as usual by dividing the steady-
state change in the process output by the amplitude of the input step.
Being based on the selection of single points in the step response, the method
is sensitive to the measurement noise and some filtering technique might be
required. Possible problems with this technique arise when a process with two
coincident poles and a time delay is considered. For example, if the (noise-free)
step response of the process

P (s) =
1

(2s + 1)2
e−s (7.44)

is considered, the estimated parameters of Model (7.42) are K = 1, T1 = 3.14,
T2 = 0.52 and L = 1.56, which are quite different from the actual ones (indeed,
it seems that the dominant dynamics is of first order). Some problems occur
also when the dominant dynamics of the process is of first order. For example,
consider the step response of the process

P (s) =
1

(0.1s + 1)(0.12s + 1)(0.13s + 1)(0.14s + 1)
. (7.45)

In this case the result of the application of the method is K = 1, T1 = 0.05,
T2 = 0.05, L = 0.01. It appears that the estimated process has a dominant
dynamics of second order. Obviously, the effectiveness of the identification
methodology has to be evaluated in conjunction with the employed tuning
procedure. However, from the above considerations it might be useful to em-
ploy this technique with another one devoted to the estimation of FOPDT
processes and to evaluate which of the two estimated transfer functions fits
better the experimental data. In case an oscillatory response is detected, in
order to estimate T and ξ, two solutions can be adopted. In the first one, the
parameters of Model (7.43) are determined by imposing that the step response
of the estimated model attains the same peak amplitude yM at the same time
tM of the experimental response. The time constant T and the damping ratio
ξ are therefore determined as:
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ξ =
η√

1 + η2
(7.46)

and

T =
1
π

√
tM

1 + ξ2
(7.47)

where

η =

∣∣∣∣∣ ln(yM − y∞)
π

∣∣∣∣∣ (7.48)

where y∞ is the final steady-state value of the step response.
In the second case, the values of the first minimum ym (attained at time tm)
and of the second maximum yM2 (attained at time tM2) are also considered.
Once the decay ratio is determined as

d =
yM2 − yM

ym − yM
, (7.49)

the two model parameters are calculated by means of the following equations:

ϕ =

∣∣∣∣∣ log(1 − d)
π

∣∣∣∣∣ , (7.50)

ξ =
ϕ√

1 + ϕ2
, (7.51)

T =
(tM2 − tM )

√
1 − ξ2

2π
. (7.52)

Note that in both cases the dead time is determined as for overdamped re-
sponses.

Harriot’s Method

The method proposed in (Harriot, 1964), and described also in (Johnson and
Moradi (eds.), 2005), is based on the fact that almost all the step responses of
processes described by transfer function (7.42) reach 73% of their steady-state
values approximately at a time of 1.3(T1 + T2) and separate from each other
most widely at time 0.5(T1 + T2). Oscillatory responses are not addressed
in this case. Thus, the technique consists of first determining the value of
A1 according to Expression (7.2). Then, the value of the dead time can be
estimated from the following equation

L = A1 −
t73

1.3
(7.53)
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where t73 is the time at which the process output attains the 73% of its final
value. Then, the sum of the two time constants T1 + T2 can be derived as

T1 + T2 = A1 − L. (7.54)

At this point it is possible to evaluate the value y∗ of the step response at
time t = 0.5(T1 + T2). From the plot of Figure 7.7, the value of the ratio
r = T1/(T1+T2) can be derived (note that the plot can be easily reconstructed
by considering different systems with different values of r). Finally, the values
of T1 and T2 are determined as

T1 = r
t73 − t0

1.3
(7.55)

and

T2 = (1 − r)
t73 − t0

1.3
. (7.56)

Although Harriot’s method is somewhat robust to the measurement noise, its
main drawback is that it might result in an estimation of a small dead time
value, with respect to other methods. This might imply that the resulting con-
troller is more aggressive than expected and this fact is actually detrimental
in practical cases.
Indeed, in some cases it might occur that a negative value of the time delay
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Fig. 7.7. Relation between y∗ and T1/(T1 + T2)
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results (as in the case of the area method for FOPDT processes). For example,
if the (noise-free) step response of the process

P (s) =
1

(10s + 1)2
e−s (7.57)

is considered, the resulting estimated parameters of the Model (7.42) are K =
1, T1 = 10.17, T2 = 10.17 and L = −0.23.

Area–Tangent Method

In the technique described in (Sundaresan et al., 1978) both monotonic and
oscillatory step responses are considered and one of the two models (7.42)–
(7.43) is automatically selected (as already mentioned, this implies that only
Model (7.43) can be adopted and if ξ ≥ 1 then Model (7.42) can be easily
derived). After having calculated the process gain K as usual by looking at
the input and output steady-state values, the estimation procedure consists
of first determining the area between the process output and the straight line
y = y∞, namely:

A1 :=
∫ ∞

t0

(y∞ − y(t))dt (7.58)

where t0 is the time instant of the input step change. Then, the tangent of
the process response is drawn at the inflection point and its slope is denoted
by Mi and its intersection with the straight line y = y∞ is denoted as tm. An
auxiliary variable λ = (tm − A1)Mi can be easily calculated for the purpose
of selecting Model (7.42) or Model (7.43). In particular, if λ < e−1, then
Model (7.42) is considered and its parameters are determined by means of the
following formulae (which are derived starting from the analytical expression
of the step response):

T1 =
η

η
1−η

Mi
(7.59)

T2 =
η

1
1−η

Mi
(7.60)

L = A1 −
η

1
1−η

Mi

η + 1
η

(7.61)

where the auxiliary variable η is determined as the solution of the equation

λ = ln

(
η

η − 1

)
exp

(
− η

η − 1

)
. (7.62)

The case λ = e−1 corresponds to a critically damped system, for which the
previous expressions reduce to
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T1 = T2 =
1

Mie
(7.63)

and

L = A1 −
2

Mie
. (7.64)

Finally, if λ > e−1, an oscillatory dynamics results and Model (7.43) is se-
lected. Its parameters are selected by solving the following equations:

λ =
cos−1 ξ√
1 − ξ2

exp

(
− ξ√
1 − ξ2

cos−1 ξ

)
, (7.65)

T =

√
1 − ξ2

cos−1 ξ
(tm − A1), (7.66)

L = A1 − 2ξT. (7.67)

It appears that the technique, being based also on the drawing of the tangent
line in the inflection point, has a somewhat high noise sensitivity. It requires
also a somewhat significant computational effort (a few equations have to be
solved numerically). Further, it has to be stressed that Model (7.43) may result
even if a monotonic step response occurs. For example, if the (noise-free) step
response of the process

P (s) =
1

(s + 1)3
(7.68)

is considered, the resulting estimated parameters are K = 1, T = 0.69, ξ =
0.77 and L = 1.94. As already mentioned, this fact is relevant especially if it
is intended to employ a PID controller in series (interacting) form, since in
this case the design is often based on pole-zero cancellation.

Four-points-based Method

The methodology proposed in (Huang and Huang, 1993) provides a SOPDT
model expressed in the form (7.43) by evaluating four points of the process
step response. The algorithm can be summarised as follows (equations are
derived by applying a least-squares method).

1. Determine the process gain K by dividing the steady-state change in the
process output by the amplitude of the step input.

2. Calculate

α =
t9 − t6

t3 − t1
(7.69)

where t1, t3, t6, t9 are the time at which the step response attains 10%,
30%, 60%, 90% of its final value.
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3. Calculate ξ as

ξ = 7.40898 · 10−40e16.3329α +
100α

4.55048α + 1.57083
+ 1.79015 · 10−2α3

+2.25401 · 10−2α2 − 1.14789α− 16.007
(7.70)

which has a usable range 2.005 ≤ α ≤ 5.508 (0.707 ≤ ξ ≤ 3.0).
4. Calculate T as

T =
4

∑
tifi(ξ) −

∑
fi(ξ)

∑
ti

4
∑

f2
i (ξ) − (

∑
fi(ξ))

2 (7.71)

and L as

L =
∑

ti
∑

f2
i (ξ) − ∑

fi(ξ)
∑

tifi(ξ)

4
∑

f2
i (ξ) − (

∑
fi(ξ))

2 (7.72)

where ∑
ti = t1 + t3 + t6 + t9, (7.73)

∑
fi(ξ) = f1(ξ) + f3(ξ) + f6(ξ) + f9(ξ), (7.74)

∑
f2

i (ξ) = f2
1 (ξ) + f2

3 (ξ) + f2
6 (ξ) + f2

9 (ξ), (7.75)

∑
tifi(ξ) = t1f1(ξ) + t3f3(ξ) + t6f6(ξ) + t9f9(ξ), (7.76)

and
f1(ξ) = 0.45465 + 0.06033ξ + 0.01674ξ2, (7.77)

f3(ξ) = 0.848967 + 0.071809ξ + 0.19753ξ2 − 0.021823ξ3, (7.78)

f6(ξ) = 1.08111 + 0.40977ξ + 0.634313ξ2 − 0.093324ξ3, (7.79)

f9(ξ) = 0.581618+0.875726ξ+3.64626ξ2−1.35143ξ3+0.173916ξ4. (7.80)

It is worth noting that, as for the area–tangent method, Model (7.43) (with
ξ ≥ 0.707) may result even if the method deals only with monotonic step
responses. Thus, it is not possible to apply a tuning rule for a series PID
controller where the derivative action is employed to cancel a pole of the
process. Indeed, this is in accordance to the fact that the four-points-based
method proposed in (Huang and Huang, 1993) aims at estimating a SOPDT
transfer function without any relationship with the tuning of a PID controller
and it is recognised that the range 0.707 ≤ ξ < 1 can be applied also to
nonoscillatory processes.
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Three-points-based Method

Similar to the four-points-based method, a three-points-based method has
been developed (on a more theoretical basis) in (Rangaiah and Krishnaswamy,
1994). It consists of finding the parameters of the Model (7.43) by applying
the following algorithm:

1. Determine the process gain K by dividing the steady-state change in the
process output by the amplitude of the step input.

2. Calculate

α =
t3 − t2

t2 − t1
(7.81)

where t1, t2 and t3 are the time at which the step response attains 14%,
55%, and 91% of its final value.

3. Calculate β and ξ as

β = ln

(
α

2.485− α

)
(7.82)

ξ = 0.50906 + 0.51743β − 0.076284β2 + 0.041363β3

−0.0049224β4 + 0.00021234β5
(7.83)

which has a usable range 1.2323 < α < 2.4850 that corresponds to 0.707 <
ξ < 3.0.

4. Calculate T and L from the following equations

t2 − t1

T
= 0.85818−0.62907ξ+1.2897ξ2−0.36859ξ3+0.038891ξ4, (7.84)

t2 − L

T
= 1.3920− 0.52536ξ + 1.2991ξ2 − 0.36859ξ3 + 0.037605ξ4. (7.85)

The method appears to be simpler than the four-points-based methods but
similar considerations can be applied, since also in this case it is assumed
that that a model with two complex-conjugate poles (with a damping factor
greater than 0.707) can accurately model a process with an overdamped step
response.

Method with Model Structure Identification

In the method proposed in (Huang et al., 2001), the model structure is selected
according to the shape of the step response. In particular, two model structures
are considered, namely,

P (s) =
K(as + 1)

(Ts + 1)(ηTs + 1)
e−Ls 0 < η ≤ 1, (7.86)

and
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P (s) =
K(as + 1)

T 2s2 + 2ξT s + 1
e−Ls 0 < ξ < 1. (7.87)

It can be remarked that processes with a positive zero (i.e., with inverse
response) and with a negative zero can be addressed by this method. Here,
for the sake of simplicity, the analysis is restricted to the case of processes
with a monotonic step response, for which it is set a = 0. Note that in this
case it is trivial to derive Model (7.42) from Model (7.86) by simply setting
T2 = ηT1. Then, the following algorithm is applied.

1. Determine the process gain K by dividing the steady-state change in the
process output by the amplitude of the step input.

2. Calculate

R0.5 =
A1 − t0.3

t0.5 − t0.3
(7.88)

R0.9 =
A1 − t0.7

t0.9 − t0.7
(7.89)

where A1 is determined as in Equation (7.58) and tx is the time when
y(tx)/y∞ = x (i.e., the time when the process output attains the x% of
its steady-state value).

3. If 1.5573 < R0.5 < 1.9108 and −0.303 < R0.9 < −0.0736 then select Model
(7.86) and determine η0.5 and η0.9 by solving the following equations:

R0.5 = 1.9108 + 0.2275η0.5 − 5.5504η2
0.5 + 12.8123η3

0.5

−11.8164η4
0.5 + 3.9735η5

0.5

(7.90)

R0.9 = −0.1871 + 0.0736η0.9 − 1.2329η2
0.9 + 2.1814η3

0.9

−1.5317η4
0.9 + 0.3937η5

0.9

(7.91)

else, select Model (7.87) and determine ξ0.5 and ξ0.9 by solving the follow-
ing equations:

R0.5 = −3.1623 + 9.3343ξ0.5 − 5.7804ξ2
0.5 + 1.1588ξ3

0.5 (7.92)

R0.9 = −6.1991 + 14.6087ξ0.5 − 12.1250ξ2
0.5 + 3.4080ξ3

0.5 (7.93)

4. Calculate

η =
η0.5 + η0.9

2
(7.94)

or

ξ =
ξ0.5 + ξ0.9

2
. (7.95)

5. If Model (7.86) is selected, then determine

t̄0.3 = 0.3548 + 1.1211η − 0.5914η2 + 0.2145η3 (7.96)
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t̄0.5 = 0.6862 + 1.1682η − 0.1704η2 + 0.0079η3 (7.97)

t̄0.7 = 1.1988 + 1.0818η − 0.4043η2 − 0.2501η3 (7.98)

t̄0.9 = 2.3063 + 0.9017η + 1.0214η2 + 0.3401η3 (7.99)

else, (if Model (7.87) is selected) determine

t̄0.3 = 0.7954 + 0.2204ξ + 0.0631ξ2 + 0.0184ξ3 (7.100)

t̄0.5 = 1.0472 + 0.3952ξ + 0.1577ξ2 + 0.0784ξ3 (7.101)
t̄0.7 = 1.2662 + 0.6045ξ + 0.2834ξ2 + 0.2868ξ3 (7.102)
t̄0.9 = 1.4655 + 0.9862ξ − 0.1236ξ2 + 1.5732ξ3 (7.103)

6. Calculate

T =
1
3

(
t0.9 − t0.7

t̄0.9 − t̄0.7
+

t0.7 − t0.5

t̄0.7 − t̄0.5
+

t0.5 − t0.3

t̄0.5 − t̄0.3

)
. (7.104)

7. Calculate

L =
t0.9 + t0.7 + t0.5 + t0.3

4
− t̄0.9 + t̄0.7 + t̄0.5 + t̄0.3

4
(7.105)

In the application of this method it has to be taken into account that, although
the model structure is automatically selected, a model with two complex con-
jugate poles might result even for a monotonic step response. Further, the
resulting time delay can be negative. For example, if the process described
by the transfer function (7.57) is considered again, the resulting values of
the estimated SOPDT transfer function are K = 1, T = 12.24, ξ = 0.85 and
L = −0.97 (note that a noise-free step response has been evaluated). Similarly
to Harriot’s method, it can be deduced that, in general, the estimated dead
time is quite small. This might imply that the resulting controller is more
aggressive than expected (especially if a tuning rule based on the normalised
dead time is selected).

Least-squares-based Method

A least-squares method that provides directly a SOPDT transfer function
from a step response without any iteration has been presented in (Wang et al.,
2001; Wang and Zhang, 2001). Indeed, with respect to the method presented
in (Sung et al., 1998) (see Section 7.2.1), it does not require a model reduction
phase, since the process parameters are determined directly from the least-
squares equations. It can be remarked that the approach is very robust to the
measurement noise, being based on the use of process output integrals in the
regression equations.
The method assumes that the process is described by the following SOPDT
transfer function
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P (s) =
b1s + b2

s2 + a1s + a2
e−Ls (7.106)

and therefore processes with a stable and an unstable zero are considered.
The following definitions are required:

γ(t) = y(t), (7.107)

φT (t) =

[
−

∫ t

0

y(τ)dτ,−
∫ t

0

∫ τ

0

y(τ1)dτ1dτ, A, tA,
1
2
t2A

]
, (7.108)

θT =

[
a1, a2,−b1L +

1
2
b2L

2, b1 − b2L, b2

]
. (7.109)

After choosing ti, i = 1, 2, . . . , N such that L ≤ t1 < t2 < · · · < tN , let

Γ = [γ(t1), γ(t2), . . . , γ(tN)], (7.110)

and
Φ = [φ(t1), φ(t2), . . . , φ(tN )]T . (7.111)

Then, the equation
Γ = Φθ (7.112)

can be solved by applying the ordinary least-squares approach. From the re-
sulting vector θ, the process parameters can be found from Equation (7.109):

⎡
⎢⎢⎢⎢⎣

a1

a2

b1

b2

L

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ1

θ2

β
θ5

− θ4 + β

θ5

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.113)

where

β =
{−

√
θ2
4 − 2θ5θ3 if an inverse response is detected√

θ2
4 − 2θ5θ3 otherwise

(7.114)

Practical issues, such as how to cope effectively with the measurement noise
and how to choose t1, tN and N are given in (Wang et al., 2001; Wang and
Zhang, 2001). Further, the knowledge of the process gain can be easily ex-
ploited by slightly modifying the technique. In any case, the methodology can
be easily applied also by assuming a process model of second order without
any zero (see (7.42)). However, it is worth stressing that, as for other tech-
niques, it is not guaranteed that a process with two real poles results when a
monotonic step response is considered.
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Optimisation-based Method

Analogously to what has been explained for FOPDT transfer functions (see
Section 7.2.1), the transfer function parameters K, T1, T2 and L (or, alterna-
tively, K, T , ξ and L) can be obtained by solving the following optimisation
problem:

min
K,T1,T2,L

∫ ∞

0

|y(t) − ym(t)|dt (7.115)

where y(t) denotes the experimental step response and ym(t) denotes the
model step response. Actually, the model parameters are searched in order
to minimise the difference between the experimental step response and the
model step response.
A practical way to solve the posed optimisation problem is to use genetic
algorithms (Mitchell, 1998). In this way, it can be easily imposed that the
resulting process poles be real, but, in any case, as already mentioned the
computational effort is significant and this is the major drawback of this
method.

7.3.2 Closed-loop Identification Techniques

Identification techniques based on closed-loop experiments can be employed
also for the estimation of SOPDT transfer functions. For example, the use of
an asymmetrical relay-feedback experiment is suggested in (Ramakrishnan
and Chidambaram, 2003). The approach is similar to that described in
(Srinivasan and Chidambaram, 2003) for FOPDT system (see Section 7.2.2).
It consists of assuming that the process is described by Model (7.42) (the
extension to Model (7.43) is trivial). Then, the obtained (ultimate) period of
oscillations is denoted by Tu. The process gain can be determined by calcu-
lating

K =

∫ t0+Tu

t0
y(t)dt∫ t0+Tu

t0
u(t)dt

. (7.116)

At this point, the following equation can be written:

K

(T1s1 + 1)(T2s1 + 1)
e−Ls1 =

y(s1)
u(s1)

(7.117)

where u(s1) and y(s1) are determined as in (7.20) and (7.21). Then, other two
equations can be considered, namely,

p(1 − T1T2ω
2
u) − qωu(T1 + T2) − K cos(Lωu) = 0 (7.118)

and
q(1 − T1T2ω

2
u) + pωu(T1 + T2) + K sin(Lωu) = 0 (7.119)
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where p and q are determined as in (7.26). The solution of the (nonlinear)
system given by Equations (7.116)–(7.119) provides the four process parame-
ters.
It is worth stressing that a numerical procedure is necessary to find the pa-
rameters and therefore the computational complexity is somewhat relevant.
Further, two complex conjugate poles might result even when the actual pro-
cess dynamics is not oscillatory.

7.4 Discussion

A review of some (step-based) open-loop and (relay-feedback) closed-loop
identification techniques for FOPDT and SOPDT transfer functions has been
presented in the previous sections with the aim of highlighting the impor-
tance of the choice of the identification method in the context of PID design.
A short description of each of the considered methods has been given in order
to understand the rationale of the approach and its complexity. Details have
been omitted (they can be found in the references).
In general, it has been shown that different options are available both for
the open-loop and the closed-loop approach, each of them showing interest-
ing features and possible drawbacks in a given application. In particular, it
is worth highlighting that when an integral is employed in the context of the
techniques based on step responses, the robustness to measurement noise in-
creases significantly, but it might be possible that the final result is incorrect,
because a negative (or, in any case, a too small) value of the time delay might
result. This fact has been actually often overlooked in the literature.
The techniques based on a relay-feedback experiment are in general less robust
to the measurement noise with respect to the step-based ones (but perform-
ing a closed-loop experiment might be significantly advantageous since the
operating point of the process does not change). In general, it has been shown
that there is a variety of strategies in the context of relay-feedback-based
methodologies and it is actually difficult to choose the most appropriate one
in a given application. At this point it is worth noting that the technique pre-
sented in the previous sections generally provide the process transfer function
from the estimated values of the (approximate) ultimate gain and frequency
of the process. An alternative procedure has been presented in (Friman and
Waller, 1997) where a two-channel relay is employed. In particular, the adop-
tion of two relays operating in parallel on the process output and on the
integral of the process output allows to estimate a user-chosen point in the
third quadrant of the complex plane. This feature can be exploited for an
effective tuning of the PID controller. In any case, the model of the process is
still basically determined starting from the knowledge of a single point of the
frequency response of the process.
Obviously, the identification of multiple points would improve the accuracy of
the obtained model. For this purpose, different techniques have been proposed
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in the literature. For example, the use of a delay term in addition to the relay
element provides the identification of a point in the frequency response that
is different from the ultimate one (Li et al., 1991; Leva, 1993). This fact has
been exploited in (Scali et al., 1999) for the identification of a completely un-
known process (a suitable model order is selected automatically in the devised
procedure). The obvious drawback of this method is that a multiple experi-
ment has to be run. This can be avoided if a technique based on the Discrete
Fourier Transform is applied (Wang et al., 1999a; Wang et al., 1999b), but a
significant additional computational effort is required.
It has also to be noted again that in the previous sections the case of processes
that can be well described by FOPDT and SOPDT models (7.1) and (7.42)
have been particularly addressed. However, it has to be taken into account that
there exists also a variety of methodologies capable to deal with processes with
an oscillatory dynamics (see, for example, (Huang and Chou, 1994; Rangaiah
and Krishnaswamy, 1996; Panda, 2006) in addition to the works referenced in
Section 7.3), with processes with a stable and an unstable zero, with integral
processes (see, for example, (Kwak et al., 1997)) and with unstable processes
(see, for example, (Vivek and Chidambaram, 2005b)).
Summarising, from the above (very simple) analysis it turns out that the
choice of the identification strategy is indeed a crucial issue in the context
of PID controllers if the tuning of the parameters is based on an estimated
model of the plant. Different aspects have been pointed out and they have to
be considered in order to provide the most satisfactory performance from a
cost/benefit point of view.

7.5 PID Control of High-order Systems

In the previous sections it has been mentioned that the great majority of PID
tuning rules assumes that the process model is described as a FOPDT or a
SOPDT transfer function. In this context different techniques that aim at ob-
taining such a models directly from simple experiments on the process have
been analysed.
From another point of view, it is recognised that many identification tech-
niques are available nowadays in order to obtain accurate high-order models
when the process exhibits a somewhat complex dynamics. Actually, it has to
be taken into account that, in many cases, an apparent time delay is indeed
due to the presence of a high-order dynamics (Leva, 2005). This has motivated
a significant research interest in the last years for the design of PID controllers
for high-order processes. It is realised that, because of the relative low-order
of the controller, a model reduction has necessarily to be performed. In this
context, two approaches can be actually followed:

1. design a model-based high-order controller by considering the (full) high-
order dynamics of the process and then reduce the controller to a PID
form;
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2. reduce first the process model to an appropriate low-order form so that a
model-based controller results directly to be in PID form.

In this section this two approaches are analysed and compared in the Inter-
nal Model Control (IMC) framework (Morari and Zafiriou, 1989), which has
been extensively adopted for the purpose of PID controller tuning, in order
to assess their advantages and disadvantages from the point of view of the
achievable performance and of the ease of use.

7.5.1 Internal Model Control Design

The IMC methodology has been widely adopted for the purpose of PID con-
troller tuning (though, being based on a pole-zero cancellation approach it is
not suitable for lag-dominant processes subject to load disturbances (Scali and
Semino, 1991; Shinskey, 1996)). Indeed, it provides the user with a desirable
feature as a tuning parameter that handles the trade-off between robustness
and aggressiveness of the controller.
In a general form, the IMC design can be applied to a standard unity-feedback
control system (see Figure 7.8). The (stable) process to be controlled can be
described by the model:

P (s) = pm(s)pa(s) (7.120)

where pa(s) is the all-pass portion of the transfer function containing all the
nonminimmum phase dynamics (note that it has to be pa(0) = 1 in order
to add the integral action to the resulting controller). The controller transfer
function is then chosen as

C(s) =
f(s)p−1

m (s)
1 − f(s)pa(s)

(7.121)

in which
f(s) =

1
(λs + 1)n

(7.122)

is the IMC filter where λ is the adjustable time constant and n is an ap-
propriate order so that the controller is realisable. It has to be noted that

C Pu ye

d

r

Fig. 7.8. Standard unity-feedback control scheme
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the nominal closed-loop transfer function, i.e., the transfer function from the
set-point signal r and the process output y, results to be

T (s) =
pa(s)

(λs + 1)n
(7.123)

and this makes the role of the free design parameter λ clear in selecting the
desired closed-loop dynamics (and therefore in handling the trade-off between
robustness and aggressiveness, as unavoidable mismatches between the true
process dynamics and its model have to be taken into account).
Obviously, in general, the resulting controller is not in PID form, i.e.:

C(s) = Kp

(
1 +

1
Tis

+ Tds

)
1

Tfs + 1
, (7.124)

if the output-filtered ideal form is implemented. This occurs if the process
model has one positive zero and two poles (note that this results if a FOPDT
transfer function is considered and a first-order Padè approximation is adopted
for the delay term (Rivera et al., 1986)), while a PI controller results if the
plant has a simple first-order dynamics. Thus, if a high-order process model
is considered, this must be reduced to this suitable form before applying the
IMC design or, alternatively, the resulting high-order controller has to be
subsequently reduced to a PID form.

7.5.2 Process Model Reduction

Skogestad’s Half Rule

The method proposed by Skogestad in (Skogestad, 2003) considers a process
model reduction based on the so-called “half rule”, which states that the
largest neglected (denominator) time constant is distributed evenly to the
effective dead time and the smallest retained time constant. In practice, given
a high-order transfer function, each numerator term (τ0s + 1) with τ0 > 0 is
first simplified with a denominator term (T0s + 1), T0 > 0 using the following
rules:

τ0s + 1
T0s + 1

≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τ0/T0 for τ0 ≥ T0 ≥ L
τ0/L for τ0 ≥ L ≥ T0

1 for L ≥ τ0 ≥ T0

τ0/T0 for T0 ≥ τ0 ≥ 5L
(T̃0/T0)

(T̃0−τ0)s+1
for T̃0

def= min(T0, 5L) ≥ τ0

(7.125)

where L is the final effective delay (to be determined subsequently). It has to
be noted that T0 is normally chosen as the closest larger denominator time
constant (T0 > τ0), except when a larger denominator time constant does
not exist or there is a smaller denominator time constant closer to τ0; this
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is true if the ratio between τ0 and the smaller denominator time constant is
less than the ratio between the larger denominator time constant and τ0 and
(both conditions must be satisfied) less than 1.6.
Once this procedure has been terminated for all the positive numerator time
constants, the process transfer function is in the following form:

P̃ (s) =

∏
j(−τ ′

j0s + 1)∏
i(Ti0 + 1)

e−L0s (7.126)

where τ ′
j0 > 0 and the time constants are ordered according to their magni-

tude. Then, a SOPDT transfer function

P (s) =
k

(T1s + 1)(T2s + 1)
e−Ls (7.127)

is obtained by applying the half rule, i.e., by setting

T1 = T10, T2 = T20 +
T30

2
, (7.128)

L = L0 +
T30

2
+

∑
i≥4

Ti0 +
∑

j

τ ′
j0. (7.129)

It appears that, being the rules (7.125) based on the final apparent time delay
L, in the first part of the algorithm there is the need to guess this final value
and to iterate in case at the end the result is incorrect.
Once the SOPDT process model is obtained, the parameters of a series PID
controller expressed by the transfer function

C(s) = Kp

(
Tis + 1

Tis

)
Tds + 1
Tfs + 1

(7.130)

are determined by applying the IMC design procedure (and by approximating
the delay term as e−Ls = 1−Ls) and by possibly modifying the value of Ti in
order to address the case of lag-dominant processes (Skogestad, 2003) (note
that this fact in not of concern in the examples presented in Section 7.5.4). It
results that the PID parameters in (7.130) are selected as

Kp =
T1

k(λ + L)
, Ti = T1, Td = T2, Tf = 0.01Td. (7.131)

Note that the conversion of the tuning rule (7.131) for the PID controller in
the ideal form (7.124) is straightforward and a recommended choice for the
desired closed-loop time constant is λ = L (Skogestad, 2003).
Summarising, the method is based on simple, easy to remember, tuning rules
(indeed, this is one of the main features of the method). However, the possi-
ble iterations in the model reduction algorithm makes the overall procedure
somewhat difficult to automate.
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Isaksson and Graebe’s Method

The technique proposed by Isaksson and Graebe in (Isaksson and Graebe,
1999) is also based on a suitable process model reduction before applying
the IMC design. The model reduction is performed as follows. Let the initial
(high-order) process model be described by the transfer function

P̃ (s) =
B(s)
A(s)

(7.132)

Then, the numerator and denominator polynomials are considered separately
and the polynomials B1(s) and A1(s) that retain only the slowest roots are
determined. Subsequently, the polynomials B2(s) and A2(s) that retain the
low-order coefficients are calculated. Finally, the reduced-order model is ob-
tained as

P (s) =

1
2
(B1(s) + B2(s))

1
2
(A1(s) + A2(s))

(7.133)

By choosing B1(s) and B2(s) of first order and A1(s) and A2(s) of second
order and by subsequently applying the IMC design (with a first-order filter
(7.122)), a PID controller (7.124) naturally arises. If there are no zeros, two
solutions can be applied:

1. a second-order denominator is calculated in the reduction procedure and
a second-order filter (7.122) is applied in the IMC design, resulting in a
PID controller;

2. a first-order denominator is calculated in the reduction procedure and a
first-order filter (7.122) is applied in the IMC design, resulting in a PI
controller.

It has to be noted that, differently from the Skogestad’s half rule, the case
of complex conjugate roots is also addressed in (Isaksson and Graebe, 1999),
but it will not be considered hereafter (see Section 7.5.4).
Summarising, the Isaksson and Graebe’s method can be easily automated,
although it is not explicitly based on tuning formulae.

Model Approximation with Step Response Data

The least-squares method presented in (Wang et al., 2001; Wang and Zhang,
2001) and explained in Section 7.3.1 can be employed also for the purpose
of model reduction. In particular, given a high-order model of the process,
a SOPDT transfer function (with one zero) can be obtained directly from
the open-loop step response. Note that there is no need of time consuming
and costly experimental results, since a simulation can be performed (Huang,
2003). In this way the overall procedure can be easily automated, although a
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relatively significant computational effort is actually necessary.
Starting from the identified model, the tuning rule (7.131) has been adopted.
However, for this purpose, the obtained SOPDT model must have real poles
and no zeros. Thus, if a zero is determined the half rule is then adopted, while
if complex conjugate poles occur, a FOPDT model (obtained with the same
identification method) is actually employed. In this latter case a PI controller
results.

7.5.3 Controller Reduction

The methods described in Section 7.5.2 are based on the reduction of the
process model before applying the IMC design. Conversely, it is possible to
apply the IMC procedure described in Section 7.5.1 by considering the full
process dynamics and then reduce the obtained high-order controller to a
PID controller form. For this purpose, a Maclaurin series expansion can be
employed. The expression of the resulting controller can be always written as
(Lee et al., 1998b; Lee et al., 1998a):

C(s) =
k(s)
s

(7.134)

and expanding C(s) in a Maclaurin series in s it results:

C(s) =
1
s

[
k(0) + k′(0)s +

k′′(0)
2

s2 + · · ·
]

(7.135)

It turns out that the first part of the series expansion contains a proportional
term, an integral term and a derivative term and therefore, if the high-order
terms are neglected, a PID controller (7.124) results (a first-order filter can be
easily added in order to make the controller proper and its time constant can
be selected sufficiently small so that its dynamics is not significant). Indeed,
the following relations hold:

Kp = k′(0)

Ti =
k′(0)
k(0)

Td =
k′′(0)
2k′(0)

(7.136)

Hence, the overall procedure can be easily automated, although it is not based
on tuning formulae and its computational burden is somewhat considerable.
However, it has to be stressed that a wrong choice of the design parameter
λ can result in the overall control system being unstable (see Section 7.5.5).
Although this can be easily checked before applying the controller, it can be
considered as a major drawback of the method.
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7.5.4 Simulation Results

In order to analyse and compare the different methodologies, the following
processes with high-order dynamics have been considered:

P1(s) =
(15s + 1)2(4s + 1)(2s + 1)

(20s + 1)3(10s + 1)3(5s + 1)3(0.5s + 1)3
, (7.137)

P2(s) =
(−0.3s + 1)(0.08s + 1)

(2s + 1)(s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)3
, (7.138)

P3(s) =
(−45s + 1)(4s + 1)(2s + 1)

(20s + 1)3(18s + 1)3(5s + 1)3(10s + 1)2(16s + 1)(14s + 1)(12s + 1)
,

(7.139)

P4(s) =
1

(s + 1)4
, (7.140)

P5(s) =
1

(s + 1)8
, (7.141)

P6(s) =
1

(s + 1)20
. (7.142)

The main characteristics of the processes are summarised in Table 7.1. It has
to be noted that transfer functions P1(s) and P3(s) have been taken from
(Wang and Cluett, 2000) (actually, P3(s) has been modified in order to ob-
tain an inverse response), P2(s) from (Skogestad, 2003) and P4(s)−P6(s) are
representative of typical industrial processes (Åström and Hägglund, 2000a;
Shinskey, 2000).
The reduced-order model that have been adopted for the PI(D) tuning are
shown in Table 7.2. Note that two transfer functions might occur for the Isaks-
son and Graebe’s technique, whereas the process dynamics has no zeros, as
explained in Section 7.5.2. Indeed, the first one results in a PID controller
(with a second-order IMC filter), while the second one results in a PI con-
troller (with a first-order IMC filter). Besides, whereas a FOPDT transfer
function is reported for the step response based method, this means that the
resulting SOPDT model has complex conjugate poles and has not therefore
been employed (see Section 7.5.2).
In order to make a fair comparison, for each method and for each process the
value of λ that minimises the integrated absolute error (4.23) for both the
set-point and the load disturbance step responses have been selected (i.e., a
unit step has been applied on signals r and d separately, see Figure 7.8). For
those methods that do not provide the value of the filter time constant Tf

explicitly, this has been selected in such a way its dynamics is negligible. The
resulting values of the integrated absolute error and the corresponding optimal
values of λ are shown in Tables 7.3–7.8. Note again that for the Isaksson and
Graebe’s method two cases (PID and PI control) might emerge, depending
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on the fact that a second-order or first-order IMC filter respectively has been
adopted (since there are no zeros in the process to be controlled). Analogously,
a PID or a PI controller results from the technique based on the step response,
depending on the use of a SOPDT model or a FOPDT model (the latter in
case the identified SOPDT model has complex conjugate poles). Finally, the
resulting (set-point and load) unit step responses are plotted in Figures 7.9–
7.14. The process responses obtained with a PI controller resulting from the
Isaksson and Graebe’s method are not reported.

Table 7.1. Main characteristics of the considered processes

P1(s) Minimum phase dynamics

P2(s) Presence of a nondominant positive zero

P3(s) Presence of a dominant positive zero

P4(s) Minimum phase dynamics with a small number of coincident poles

P5(s) Minimum phase dynamics with a medium number of coincident poles

P6(s) Minimum phase dynamics with a high number of coincident poles

Table 7.2. Resulting reduced models for the different methods

Process Skogestad Isaksson and Graebe step response

P1(s)
e−35.5s

(20s + 1)(15s + 1)

25.5s + 1

2642s2 + 73.25s + 1

e−27.38s

44.46s + 1

P2(s)
e−0.77s

(2s + 1)(1.2s + 1)

− 0.26s + 1

3.21s2 + 3.38s + 1

e−0.79s

2.48s2 + 3.17s + 1

P3(s)
e−180s

(30s + 1)(20s + 1)

− 42s + 1

8564s2 + 115.7s + 1

e−127.7s

106.6s + 1

P4(s)
e−1.5s

(1.5s + 1)(s + 1)

1

2.25s2 + 3s + 1

1

2.5s + 1

e−1.38s

2.71s + 1

P5(s)
e−5.5s

(1.5s + 1)(s + 1)

1

14.52s2 + 5.02s + 1

1

4.51s + 1

e−3.88s

4.24s + 1

P6(s)
e−17.5s

(1.5s + 1)(s + 1)

1

95.98s2 + 11.40s + 1

1

10.70s + 1

e−12.72s

7.76s + 1
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Table 7.3. Optimal IAE ’s (and corresponding values of λ) for process P1(s)

Method Task
set-point load

Skogestad 71.38 (9.6) 54.45 (0.01)

Isaksson and Graebe PID 63.08 (54.4) 48.13 (39.1)

PI

step response PID

PI 73.49 (37.2) 60.16 (20.8)

Maclaurin 42.07 (4.4) 25.35 (2.8)

Table 7.4. Optimal IAE ’s (and corresponding values of λ) for process P2(s)

Method Task
set-point load

Skogestad 1.852 (0.83) 0.869 (0.03)

Isaksson and Graebe PID 1.963 (1.22) 0.985 (0.37)

PI

step response PID 1.819 (0.78) 0.863 (0.01)

PI

Maclaurin 1.783 (0.18) 0.986 (0.07)

Table 7.5. Optimal IAE ’s (and corresponding values of λ) for process P3(s)

Method Task
set-point load

Skogestad 376.5 (120.1) 384.3 (115.2)

Isaksson and Graebe PID 251.7 (122.3) 253.6 (113.0)

PI

step response PID

PI 301.1 (159.0) 307.7 (153.6)

Maclaurin 231.6 (11.5) 233.5 (10.9)
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Table 7.6. Optimal IAE ’s (and corresponding values of λ) for process P4(s)

Method Task
set-point load

Skogestad 3.133 (0.49) 1.952 (0.001)

Isaksson and Graebe PID 2.722 (0.87) 1.073 (0.39)

PI 4.099 (3.44) 3.183 (2.33)

step response PID

PI 3.998 (2.06) 3.063 (0.96)

Maclaurin 2.041 (0.41) 0.876 (0.19)

Table 7.7. Optimal IAE ’s (and corresponding values of λ) for process P5(s)

Method Task
set-point load

Skogestad 11.58 (3.01) 10.95 (2.06)

Isaksson and Graebe PID 7.776 (2.78) 6.401 (2.34)

PI 9.550 (8.83) 8.880 (7.88)

step response PID

PI 9.662 (4.96) 9.030 (4.00)

Maclaurin 6.561 (0.74) 5.394 (0.61)

Table 7.8. Optimal IAE ’s (and corresponding values of λ) for process P6(s)

Method Task
set-point load

Skogestad 36.86 (11.2) 36.49 (10.5)

Isaksson and Graebe PID 23.01 (8.83) 21.88 (8.42)

PI 25.84 (24.6) 25.22 (23.8)

step response PID

PI 27.36 (12.2) 26.95 (11.4)

Maclaurin 19.85 (0.90) 18.81 (0.86)
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Fig. 7.9. Optimal set-point (left) and load disturbance (right) step responses for
P1(s). Dashed line: Skogestad; dash-dot line: Isaksson and Graebe; dotted line: step
response; solid line: Maclaurin.
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Fig. 7.10. Optimal set-point (left) and load disturbance (right) step responses for
P2(s). Dashed line: Skogestad; dash-dot line: Isaksson and Graebe; dotted line: step
response; solid line: Maclaurin.
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Fig. 7.11. Optimal set-point (left) and load disturbance (right) step responses for
P3(s). Dashed line: Skogestad; dash-dot line: Isaksson and Graebe; dotted line: step
response; solid line: Maclaurin.
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Fig. 7.12. Optimal set-point (left) and load disturbance (right) step responses for
P4(s). Dashed line: Skogestad; dash-dot line: Isaksson and Graebe; dotted line: step
response; solid line: Maclaurin.
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Fig. 7.13. Optimal set-point (left) and load disturbance (right) step responses for
P5(s). Dashed line: Skogestad; dash-dot line: Isaksson and Graebe; dotted line: step
response; solid line: Maclaurin.
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Fig. 7.14. Optimal set-point (left) and load disturbance (right) step responses for
P6(s). Dashed line: Skogestad; dash-dot line: Isaksson and Graebe; dotted line: step
response; solid line: Maclaurin.
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7.5.5 Discussion

From the results obtained it appears that the approach based on the Maclau-
rin series expansion provides in general the best performance, both for the
set-point following and the load disturbance rejection task. This is due to its
capability of providing a higher open-loop crossover frequency without de-
creasing the phase margin with respect to the other methods (Visioli, 2005c).
From another point of view, this means that in the set-point step responses
a small rise time is achieved without impairing the overshoot and in the load
disturbance step responses a small peak error results without the occurrence
of significant oscillations.
It turns out that it is better to reduce the model of the controller than that
of the plant, because the approximation introduced by adopting only the first
three terms of the series expansion is not detrimental in the range of frequen-
cies that is significant for the considered control system. However this is true
only if an appropriate value of λ is selected. Indeed, a wrong choice of λ might
imply negative parameters of the PID controller or, more remarkably, it might
lead the system to instability (even if the PID parameters are positive). For
example, for system P3(s), if λ ≤ 6 or λ ≥ 162 the resulting closed-loop sys-
tem is unstable and, in any case, if λ ≥ 20 at least one of the PID parameters
results to be less than zero. In order to better clarify this fact, consider the
value λ = 5.0. The Maclaurin series approximation of the IMC controller gives
a PID controller with Kp = 1.09, Ti = 158.4 and Td = 68.32 (all the param-
eters are positive) and the resulting closed-loop system is actually unstable.
This fact can be understood by looking at Figures 7.15 and 7.16 where the
Bode plots of the two controllers and of the open-loop system with the origi-
nal IMC controller and with the PID one are reported respectively. It appears
that the approximation of the IMC controller around the critical frequency
is not sufficiently accurate (indeed, the series expansion is centered at the
zero frequency) and therefore the crossover frequency increases too much to
provide a positive phase margin.
In general, it might happen that a quite narrow range of values for λ is suit-
able for a given process. Despite the fact that an unappropriate value of λ
can be easily recognised during the design phase, this can be considered as a
major drawback of the method, which has been overlooked in the literature.
Indeed, this makes the overall design more complicated and, most of all from
a practical point of view, the physical meaning of the filter time constant,
which should handle the trade-off between aggressiveness and robustness and
control activity of the control system, is actually lost (increasing the value
of λ does not necessarily correspond anymore to a more sluggish and stable
control system).
It has also to be noted that the optimal values of λ differ significantly be-
tween the considered methodology, although it appears, as expected, that, in
general, a higher order filter (i.e., for the Maclaurin series based technique or
when a PID controller is adopted instead of a PI controller in the Isaksson
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Fig. 7.15. Bode plot of the IMC controller (solid line) and of the approximating
PID controller (dashed line)
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Fig. 7.16. Bode plot of the open-loop transfer function C(s)P3(s) with IMC con-
troller (solid line) and with the approximating PID controller (dashed line)
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and Graebe’s method) implies a smaller value of λ (and the load disturbance
rejection task requires a smaller value of λ than the set-point following task).
From the results obtained, it also appears that the Isaksson and Graebe’s
method provides in general a better performance that the Skogestad’s one
and, as expected, the PID controller is better than the PI controller when the
analytical PID design technique of Isaksson and Graebe is considered. Note,
however, that the tuning rules (7.131) have been conceived with the aim of
being applicable to a wide range of processes and of being easy to memorise.
Regarding the method based on the step response data, it can be deduced that
in general it provides worse performance than the Isaksson and Graebe’s one,
while no general conclusions can be drawn with respect to the Skogestad’s
method.

7.6 Conclusions and References

In this chapter, the issue of the identification of the process model and of
the design of a PID controller when a high-order process model is available
has been addressed. It has been shown that many methods for the estimation
of a FOPDT and SOPDT transfer function have been devised, with differ-
ent characteristics that have to be evaluated in a given application in order to
provide a cost-effective PID design. Possible problems, often overlooked in the
literature, have been indicated, mainly with the aim of highlighting that the
identification method is indeed an integral part of the overall controller de-
sign and its choice is critical. It has also been shown that, in case a high-order
process model is available, either the approach of reducing first the process
model or of reducing the controller at the end can be applied. In the latter
case a better performance can be achieved in general but at the expense of a
more complicated and less intuitive design.
The review provided for the identification methods is surely not exhaustive.
In the context of PID control, an up-to-date review of basic and advanced
identification methods can be found in (Johnson and Moradi (eds.), 2005).
The subject of relay-feedback is thoroughly addressed in (Wang et al., 2003),
while its use for system identification is analysed in (Yu, 1999), where ad-
vanced methodologies are also presented. A tutorial review of relay-feedback
automatic tuning techniques for process controllers can be found in (Hang et
al., 2002).
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Performance Assessment

8.1 Introduction

For plant safety and profitability it is essential to check continuously that the
plant performance satisfies the required operating objectives. Thus, process
monitoring plays a key role in running the plant effectively and economically
(Seborg et al., 2004). In this context, it is important to verify that the control
system performs properly. Actually, because in large plants there are hun-
dreds of control loops, it is almost impossible for operators to monitor each
of them manually. Thus, it is important to have tools that are first able to
determine automatically if an abnormal situation occurs and then to help the
operator to understand the reason for it and possibly to suggest the way to
solve the problem (for example, if a bad controller tuning is detected, then
new appropriate values of controller parameters are determined).
In this chapter, techniques for control loop performance assessment are pre-
sented. Although they can be viewed under the same framework (Huang and
Shah, 1999), they are conveniently divided in two categories (Qin, 1998): those
related to the stochastic performance monitoring, in which the capability of
the control system to cope with stochastic disturbances is of main concern, and
those related to the deterministic performance monitoring, in which the per-
formance related to more traditional design specifications such as set-point
and load rejection disturbance step response parameters are taken into ac-
count (Eriksson and Isaksson, 1994). The main emphasis is devoted to this
latter case, which is believed to be the most interesting in the PID control
context. Further, it is worth stressing that many concepts can be applied in
general, independently of the controller type. However, a special attention is
paid to the case where a PID controller is employed.



210 8 Performance Assessment

8.2 Generalities

The assessment of the performance of a control loop is a complex task which
should be generally performed by applying the following steps (Jelali, 2006).

1. A performance index is calculated based on the available data in order to
measure the performance of the current control system.

2. A benchmark, which represents the desired performance, is selected, so
that the current control performance can be evaluated against it.

3. The deviation of the current control performance from the selected bench-
mark is determined, so that it is evaluated if the control system perfor-
mance can be considered as satisfactory or if it needs to be improved.

4. In case the current control performance is not satisfactory, the reasons
for it are diagnosed. Indeed, this is the most difficult task, since there
are different causes for a poor performance (inappropriate control struc-
ture, bad controller tuning, inappropriate equipment design, equipment
malfunction).

5. Corrective actions are suggested for pursuing the selected benchmark per-
formance.

It can be easily deduced that different approaches can be selected for each
step, and they have to be properly integrated in order to design a consistent
overall strategy.

8.3 Stochastic Performance Assessment

Many works in the field of performance monitoring are related to the as-
sessment of the output variance due to stochastic disturbances. These are
assumed to be generated from a dynamic system driven by white noise. In
this context the devised approaches are based on the minimum variance con-
cept (Qin, 1998; Harris et al., 1999), which is developed in the discrete-time
framework.

8.3.1 Minimum Variance Control

In its basic form, the minimum variance control assumes that the (linear,
time-invariant) process is described by the model (Katebi and Ordys, 1996)

y(t) =
B(q−1)
A(q−1)

q−du(t) +
C(q−1)
A(q−1)

w(t), (8.1)

where y(t) represents the variation of the process variable around a given
steady-state operating point, u(t) is the control variable, w(t) is a zero-mean
Gaussian white noise, q−1 is the backward shift operator, i.e.,

q−1x(t) = x(t − 1), (8.2)
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and A(q−1), B(q−1) and C(q−1) are nth order polynomials, i.e.,

A(q−1) = 1 + a1q
−1 + · · · + anq−n, (8.3)

B(q−1) = b0 + b1q
−1 + · · · + bnq−n, b0 �= 0, (8.4)

C(q−1) = 1 + c1q
−1 + · · · + cnq−n. (8.5)

It can be noted that q−d models a d-step delay in the control signal, so that
the effects of a change in the control signal appear on the process after d
sampling times. The aim of the minimum variance control is to determine the
control signal u(t) that minimises the variance of the process output at time
t + d, given all the information available at time t. Thus, the performance
index to minimise is

J(t) = E
{
y(t + d)2|Y (t)

}
, (8.6)

where E{·|·} is the conditional expectation operator and

Y (t) = [u(t − d − 1), u(t − d − 2), . . . , y(t), y(t − 1), . . .]. (8.7)

For the solution of the problem it is convenient to rewrite the process model
as

y(t + d) =
B(q−1)
A(q−1)

u(t) +
C(q−1)
A(q−1)

w(t + d). (8.8)

Since the random variables [w(t + d − 1), w(t + d − 2), . . . ] are assumed in-
dependent of the process output [y(t), y(t − 1), . . .] and all the future control
inputs are assumed to be zero, the disturbance signal can be separated into
causal and noncausal part and therefore Equation (8.8) can be rewritten as

y(t + d) =
B(q−1)
A(q−1)

u(t) +

[
E(q−1) + z−d F (q−1)

A(q−1)

]
w(t + d), (8.9)

where polynomials E(q−1) and F (q−1) are defined as

E(q−1) = 1 + e1q
−1 + · · · + edq

−d, (8.10)

F (q−1) = f0 + f1q
−1 + · · · + fn−1q

−(n−1), (8.11)

and they satisfy the following Diophantine equation:

A(q−1)E(q−1) + q−dF (q−1) = C(q−1). (8.12)

By considering Equations (8.8), (8.9) and (8.12), it can be written
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y(t + d) =
E(q−1)B(q−1)

C(q−1)
u(t) +

F (q−1)
C(q−1)

y(t) + E(q−1)w(t + d). (8.13)

Hence, the performance index (8.6) is:

J(t) = E

⎧⎨
⎩

[
E(q−1)B(q−1)

C(q−1)
u(t) +

F (q−1)
C(q−1)

y(t)

]2
⎫⎬
⎭+ E

{[
E(q−1)w(t + d)

]2
}

,

(8.14)
where the expected value of the cross-product term is zero because [w(t +
d), w(t + d− 1), . . . , w(t + 1)] are independent from [y(t), y(t− 1), . . . , ]. Thus,
the minimum variance control law is the one that set to zero the first term of
the right-hand side of (8.14), i.e.,

u(t) = − F (q−1)
B(q−1)E(q−1)

y(t). (8.15)

It is worth noting that, in order for the closed-loop to be stable, the process
has to be minimum-phase, namely B(q−1) has to be stable (see (Åström and
Wittenmark, 1997) for the solution of the problem for nonminimum-phase
systems).

8.3.2 Assessment of Performance

Based on the concepts expressed in the previous section, the performance
achieved by a given feedback controller can be assessed in the sense that it
can be evaluated how far it is from the minimum variance performance. In
particular, this can be done quite easily if the dead time of the process (ex-
pressed as the number d of sampling intervals) is known (see, for example,
(Horch, 2000; Björklund, 2003; Ahmed et al., 2006) for techniques for esti-
mating it). Indeed, an autoregressive moving average (ARMA) model of the
closed-loop system relating the noise w to the process output y has to be
estimated from a selected period of routine data:

y(t) =
ny∑
i=1

aiy(t − i) +
nw∑
i=1

ciw(t − i) + w(t), (8.16)

where (ny, nw) is the model order (which can be actually selected by a trial
and error procedure). The obtained ARMA model has then to be expanded
into an impulse response model (by performing a long division) that has to
be truncated at the first d − 1 coefficients (note that the first d terms are
invariant with respect to the adopted controller):

y(t) = w(t) +
d−1∑
i=1

ψiw(t − i). (8.17)
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The estimated minimum variance can therefore be determined as

σ2
MV =

(
1 +

d−1∑
i=1

ψ2
i

)
σ2

w, (8.18)

where σ2
w is the estimated noise variance. The value of σ2

MV can then be
compared to the estimate of the output variance σ2

y which is given by:

σ2
y =

1
N − 1

N∑
i=1

(y(i) − ȳ)2 (8.19)

where ȳ is the mean value of the process output. This can be done by means
of the so-called Harris Index, which is expressed as (Harris, 1989):

HI =
σ2

y

σ2
MV

. (8.20)

It can be easily deduced that HI ∈ [1, +∞). Determining a value of HI close to
one means that the performance achieved by the adopted controller is close to
the minimum variance performance, while a large value of HI might indicate
that the controller should be retuned. Alternatively, the inverse of the Harris
Index

η =
σ2

MV

σ2
y

. (8.21)

or the Normalised Harris Index:

NHI = 1 − η = 1 − σ2
MV

σ2
y

=
σ2

y − σ2
MV

σ2
y

(8.22)

can be evaluated. It appears that η ∈ (0, 1] and the less the value of η is, the
worse is the performance. On the contrary, NHI = 0 means that the optimal
performance is achieved, while a value of NHI close to one means that the
controller is not performing well (note that NHI ∈ [0, 1)).
As an illustrative example, consider the following process:

y(t) =
1 − 0.1q−1

1 − 0.7q−1 + 0.1q−2
q−3u(t) +

1 − 0.2q−1 + 0.5q−2

1 − 0.7q−1 + 0.1q−2
w(t). (8.23)

By solving the Diophantine equation (8.12), it results:

E(q−1) = 1 + 0.5q−1 + 0.75q−2 (8.24)

and
F (q−1) = 0.475− 0.075q−1. (8.25)

Hence, the minimum variance control law results to be:
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Fig. 8.1. Process variable with a minimum variance controller (solid line) and with
a PI controller (dashed line)

u(t) = − 0.475 − 0.075q−1

1 + 0.4q−1 + 0.7q−2 − 0.075q−3
y(t). (8.26)

The result of an experiment with the minimum variance controller is shown in
Figure 8.1 (the noise variance has been fixed to 0.01). The application of the
performance assessment methodology, where a second-order ARMA model has
been estimated, results in η = 0.98, which confirms that an optimal controller
has been adopted.
Conversely, if the (PI) control law

u(t) = −0.3 − 0.1q−1

1 − q−1
y(t) (8.27)

is adopted, the resulting value of η is 0.29 (the process variable obtained is
shown again in Figure 8.1), so that it can be deduced that the performance
can be improved.
As an alternative methodology, the autocorrelation of the output can be calcu-
lated in order to verify if there is significant correlation beyond the time delay
(Qin, 1998). In particular, given a time-series [y(t), y(t+1), . . . , y(t+N − 1)],
the autocorrelation function is determined by calculating

ρy(j) =
1
N

N−1−j∑
i=0

(y(t + i) − ȳ)(y(t + i + j) − ȳ) (8.28)
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where ȳ is again the mean value of the time series. The control is roughly
achieving the minimum variance if, for j ≥ d,

ρy(j) ∈
[
−2

√
var [ρy(j)], +2

√
var [ρy(j)]

]
, (8.29)

where

var [ρy(j)] =
1
N

[
1 + 2

d−1∑
i=1

ρ2
y(i)

]
. (8.30)

Although it is appealing to determine how far the performance achieved by
a given controller is from the minimum variance controller, the approach
presents serious drawbacks that decrease its significance in a wide range of
practical situations (Qin, 1998). Actually, the theoretical minimum variance
σ2

MV is invariant regardless of the control structure. Thus, it represents a lower
bound that could not be achieved by the given control structure (for exam-
ple, a PID controller) and therefore it is not easy to understand if retuning
the controller would improve the performance or if it would be necessary to
change the controller structure. In other words, despite a high value of the
Harris Index, the performance achieved by a controller could not be improved
by simply retuning it. This is particularly true for processes with a significant
dead time if a model-based dead-time compensator is not employed in the
control system, since the minimum variance control has the same structure
of the Smith predictor (Palmor, 1996). By following the same reasoning, the
minimum variance performance assessment is not applicable for processes with
a varying time delay. In any case, it is worth stressing that it is wise to repeat
the calculation of the Harris Index from time to time because of the varying
nature of the disturbances and of the process dynamics. This means that an
accurate estimation of the dead time of the process has to be performed every
time.
From another point of view, even if the achieved stochastic performance is
satisfactory, this might not be compatible with the required deterministic
performance (for example in the set-point following and load disturbance re-
jection task) (Thornhill et al., 2003). It is worth noting in this context that the
minimum variance controller is based on pole-zero cancellation (see Equation
(8.15)) and that there is not a chance to address the set-point task rather than
the load disturbance rejection task (or vice versa) and to handle the trade-off
between aggressiveness, robustness and control effort. These concepts will be
further discussed in Section 8.4.
Summarising, the minimum variance performance assessment approach is ef-
fective most of all for low-order processes with negligible dead time (such
as flow loops), when the rejection of stochastic disturbances is of primary
concern.
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8.3.3 Assessment of PID Control Performance

In the previous section it has been highlighted that the use of the Harris Index
for the performance assessment of PID controllers can be misleading, since,
even if the actual variance is far from the minimum one, the performance
could not be improved by retuning the controller. Thus, a more realistic per-
formance measure, which takes into account the controller structure, should
be adopted.
An iterative solution method for the determination of PID achievable perfor-
mance bound has been proposed in (Ko and Edgar, 2004). The process output
is described by the discrete-time model

y(t) = P (q−1)q−du(t) + N(q−1)w(t) (8.31)

where P (q−1)q−d is the process model with a dead time d and N(q−1) is the
disturbance model driven by a zero-mean white noise w(t). The PID controller
is expressed as (see (1.41), note that here lower letters are adopted for the
PID parameters in order to stress that they are scalar quantities):

C(q−1) =
k1 + k2q

−1 + k3q
−2

1 − q−1
. (8.32)

By considering Expression (8.32), the process output can be rewritten as

y(t) = −
m∑

i=1

si

(
k1 + k2q

−1 + k3q
−2

)
y(t − i) +

∞∑
i=0

niw(t − i) (8.33)

where the si (i = 1, . . . , m) represent the process step response coefficients and
the ni (i = 0, . . . ,∞) represent the disturbance impulse response coefficients.
In order to obtain the output variance as a function of the PID parameters,
it is assumed that a single random shock w0 is introduced in the closed-loop
system at time t = 0. In this case the closed-loop response over a finite horizon
p can be written as⎡

⎢⎢⎢⎣
y0

y1

...
yp

⎤
⎥⎥⎥⎦ =

(
I + Sk1 + FSk2 + F 2Sk3

)−1
n̄w0 (8.34)

where I is the (p + 1) × (p + 1) identity matrix,

S =

⎡
⎢⎢⎢⎢⎢⎣

0 · · ·
s1 0
s2 s1 0
...

...
. . . . . .

sp sp−1 · · · s1 0

⎤
⎥⎥⎥⎥⎥⎦ , (8.35)
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n̄ =

⎡
⎢⎢⎢⎣

n0

n1

...
np

⎤
⎥⎥⎥⎦ , (8.36)

and F is a (p + 1) × (p + 1) matrix defined as:

F =

⎡
⎢⎢⎢⎢⎣

0 0

1
. . .
. . . . . .

0 1 0

⎤
⎥⎥⎥⎥⎦ . (8.37)

If the random shock occurs at every time instant, the closed-loop system
response can be determined as

y(t) =
p∑

i=0

ψiw(t − i) (8.38)

where ⎡
⎢⎢⎢⎣

ψ0

ψ1

...
ψp

⎤
⎥⎥⎥⎦ =

(
I + Sk1 + FSk2 + F 2Sk3

)−1
n̄ (8.39)

defines the vector of the closed-loop impulse response coefficients. The output
variance can be therefore expressed as

σ2
PID = n̄T

(
I + ST k1 + (FS)T k2 + (F 2S)T k3

)−1

· (I + Sk1 + FSk2 + F 2Sk3

)−1
n̄σ2

w.
(8.40)

It is worth stressing that the process model is described by means of its step
response coefficients. It can be remarked that Expression (8.40) can be used
to determine the optimal PID parameters that minimise the output variance.
Indeed, the optimal parameters satisfy the following first-order necessary con-
dition:

∂σ2
PID

∂k1
= −2n̄T (Γ−1)T SΓ−2n̄ = 0 (8.41)

∂σ2
PID

∂k2
= −2n̄T (Γ−1)T FSΓ−2n̄ = 0 (8.42)

∂σ2
PID

∂k3
= −2n̄T (Γ−1)T F 2SΓ−2n̄ = 0 (8.43)
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where Γ = I + Sk1 + FSk2 + F 2Sk3. The second-order derivatives can be
expressed as:

∂2σ2
PID

∂k2
1

= 2n̄T (Γ−2)T ST SΓ−2n̄ + 4n̄T (Γ−1)T S2Γ−3n̄, (8.44)

∂2σ2
PID

∂k1∂k2
= 2n̄T (Γ−2)T (FS)T SΓ−2n̄ + 4n̄T (Γ−1)T FS2Γ−3n̄, (8.45)

∂2σ2
PID

∂k1∂k3
= 2n̄T (Γ−2)T (F 2S)T SΓ−2n̄ + 4n̄T (Γ−1)T F 2S2Γ−3n̄, (8.46)

∂2σ2
PID

∂k2
2

= 2n̄T (Γ−2)T (FS)T (FS)Γ−2n̄ + 4n̄T (Γ−1)T F 2S2Γ−3n̄, (8.47)

∂2σ2
PID

∂k2∂k3
= 2n̄T (Γ−2)T (F 2S)T (FS)Γ−2n̄ + 4n̄T (Γ−1)T F 3S2Γ−3n̄, (8.48)

∂2σ2
PID

∂k2
3

= 2n̄T (Γ−2)T (F 2S)T (F 2S)Γ−2n̄ + 4n̄T (Γ−1)T F 4S2Γ−3n̄. (8.49)

These expressions can be adopted to find the optimal PID settings k̄opt =
[k1,opt, k2,opt, k3,opt] by means of Newton’s iterative method, namely, by up-
dating the PID parameters by means of the expression:

k̄new = k̄opt −

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2σ2
PID

∂k2
1

∂2σ2
PID

∂k1∂k2

∂2σ2
PID

∂k1∂k3

∂2σ2
PID

∂k1∂k2

∂2σ2
PID

∂k2
2

∂2σ2
PID

∂k2∂k3

∂2σ2
PID

∂k1∂k3

∂2σ2
PID

∂k2∂k3

∂2σ2
PID

∂k2
3

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

k̄=k̄old

·

⎡
⎢⎢⎢⎢⎢⎢⎣

∂σ2
PID

∂k1
∂σ2

PID

∂k2
∂σ2

PID

∂k3

⎤
⎥⎥⎥⎥⎥⎥⎦

k̄=k̄old

. (8.50)

When the convergence is obtained, the optimality of the determined PID pa-
rameters can be checked by verifying the positive definitiveness of the Hessian
matrix.
The best achievable performance bound can then be calculated as:

(σ2
PID)opt = n̄T (Γ−1

opt)
T Γ−1

opt n̄σ2
w, (8.51)

where
Γopt = I + Sk1,opt + FSk2,opt + F 2Sk3,opt. (8.52)
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It is worth noting at this point that the optimal PID parameters and the
achievable minimum variance can be derived starting from the knowledge of
the process step response coefficients (which can be obtained by means of a
standard simple open-loop experiment) and from the impulse response coeffi-
cients of the disturbance. These can be obtained by considering the following
relationship between the disturbance model impulse response and the closed-
loop impulse response:

n̄ = (I + Sk1 + FSk2 + F 2Sk3) ·

⎡
⎢⎢⎢⎣

ψ0

ψ1

...
ψp

⎤
⎥⎥⎥⎦ . (8.53)

Hence, an estimation of the disturbance impulse response coefficients ˆ̄n can
be derived from the estimation of the closed-loop impulse response ψ̂ obtained
by means of a time-series modelling of the closed-loop data:

ˆ̄n = (I + Sk1 + FSk2 + F 2Sk3) ·

⎡
⎢⎢⎢⎣

ψ̂0

ψ̂1

...
ψ̂p

⎤
⎥⎥⎥⎦ . (8.54)

It can be remarked that the devised methodology can be adopted also for as-
sessing the control performance (and for determining the optimal PID parame-
ters) in the context of deterministic set-point tracking. Indeed, it is recognised
that a step change in the set-point can be modelled as

1
1 − q−1

w(t) (8.55)

where w(t) is zero except at the time of the set-point change. Thus, in this
case the vector of the disturbance impulse response coefficients is simply

n̄ =

⎡
⎢⎣

1
...
1

⎤
⎥⎦ . (8.56)

It is worth also noting that the minimum variance index (8.21) can be calcu-
lated directly as (Thornhill et al., 2003)

η =
σ2

MV

σ2
y

=
∑d−1

i=0 y2(t)∑∞
i=0 y2(t)

. (8.57)

As an illustrative example consider again the process (8.23). A PI controller
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Fig. 8.2. Process variable with a PI controller

C(q−1) =
0.22 − 0.2q−1

1 − q−1
(8.58)

is initially adopted. The process output obtained by setting a noise variance
of 0.01 is shown in Figure 8.2 (compare it with Figure 8.1). The performance
index (8.21) results to be η = 0.90, which indicates that the PI controller is
well tuned from the regulatory control point of view. However, the closed-
loop set-point step response performance is not satisfactory, as it appears
from Figure 8.3. By running Newton’s iterative method (8.50), the optimal
PID parameter is then derived as

C(q−1) =
0.7286− 1.0386q−1 + 0.4252q−2

1 − q−1
. (8.59)

The resulting closed-loop set-point step response is shown in Figure 8.4, where
the sensible performance improvement appears.
In order to assess the performance of a PID controller, it is suggested to
compare the actual variance to that obtained by the (determined) optimal
PID controller (Ko and Edgar, 2004). Thus, similarly to the inverse Harris
index, the following performance index can be used:

η =
(σ2

PID)opt

σ2
y

. (8.60)
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Fig. 8.3. Set-point response with a PI controller
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Fig. 8.4. Set-point response with the optimal PID controller
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Note that 0 < η ≤ 1 and η = 1 means that the best performance is achieved.
Given a time-series of n samples, an estimation of the performance index can
be derived as:

η̂ =
ȳT

optȳopt

ȳT ȳ
, (8.61)

where

ȳ =

⎡
⎢⎢⎢⎣

y(t)
y(t − 1)

...
y(t − n + 1)

⎤
⎥⎥⎥⎦ (8.62)

is the vector of the measured output, and

ȳopt =

⎡
⎢⎢⎢⎣

yopt(t)
yopt(t − 1)

...
yopt(t − n + 1)

⎤
⎥⎥⎥⎦ (8.63)

is the vector of the closed-loop outputs that can be achieved by the optimal
PID settings. Once the optimal PID parameters are determined by iteratively
applying Equation (8.50), ȳopt can be calculated as

ȳopt =
1 + C(q−1)P (q−1)q−d

1 + Copt(q−1)P (q−1)q−d
y(t) (8.64)

where C(q−1) is the adopted PID controller and Copt(q−1) is the PID con-
troller with the optimal settings.
It is worth stressing again that, in the context of PID controllers, using the
performance index (8.60) is more sensible than using the Harris Index, be-
cause it is related to a performance that is achievable in practice. In order to
understand this fact better, it is worth considering that the resulting value
of the performance index (8.60) is 0.32 for the PI controller (8.27) and 0.92
for the PI controller (8.58), indicating that the latter provides a much better
performance from the stochastic disturbance rejection point of view.

8.4 Deterministic Performance Assessment

It has been already mentioned in Section 8.3.2 that addressing a stochastic
performance (namely, minimising the output variance) might be in conflict
with satisfying (deterministic) performance requirements related to the set-
point following or the load disturbance rejection task. For example, if the
noise dynamics is ARMA, then the minimum variance controller has no in-
tegral action (Qin, 1998), so that a null steady-state error is not achieved in
general (more precisely, the mean value of the steady-state control error is not
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null). Indeed, in practical cases the control requirements are often specified
in terms of maximum overshoot, settling time, and so on. Further, robustness
constraints and control effort should be taken into account. In any case, a
trade-off between stochastic and deterministic performance should be consid-
ered.
When the deterministic requirements are considered, it is realised that an un-
satisfactory performance can be caused by different factors (Patwardhan and
Shah, 2002).
Thus, there is the need to integrate different techniques, each of them devoted
to deal with a particular situation. Obviously, it is desirable that each tech-
nique be based as much as possible on routine operating data and that no
process model is required in order to be employed in general. In the follow-
ing section different functionalities devoted to detect and analyse a particular
situation are presented. They will be subsequently exploited in the context of
PID performance assessment.

8.4.1 Useful Functionalities

Oscillation Detection

A major source of degradation of the quality of the end product is given by the
presence of oscillations in a control loop, which cause also an increased energy
consumption. Actually, oscillations can be caused by different reasons and
therefore, in addition to detect automatically the occurrence of oscillations,
it is important to detect the reason for it, in order to take the appropriate
correction. This aspect will be discussed in the following section.
In order to detect a persistent oscillation, a method has been presented in
(Hägglund, 1995) (note that it has been successfully tested in industrial en-
vironments). It is based on a load disturbance detection procedure which
consists of determining the integrated absolute error between two successive
zero crossings time instants ti−1 and ti of the control error:

IAE =
∫ ti

ti−1

|e(t)|dt. (8.65)

If the controller has no integral action, then the difference between the mea-
surement signal and its average value should be adopted instead of the control
error.
A load disturbance is detected if the value of IAE exceed a given threshold
IAE lim. The value of IAE lim is fixed as

IAE lim =
2a

ωu
(8.66)

where a is the amplitude of an acceptable oscillation, which should not be de-
tected (a reasonable choice for it is a = 1%), and ωu is the ultimate frequency
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of the process. If the value of ωu is not available, it can be substituted (assum-
ing that the PI(D) controller is properly tuned) with ωi = 2π/Ti where Ti is
the integral time constant. Thus, if it is IAE > IAE lim between two succes-
sive zero crossings time instants, then it is concluded that a load disturbance
has occurred.
It is worth noting at this point that an alternative load detection procedure
has been proposed in (Salsbury, 2005). It is based on a statistical change
detection procedure that uses zero crossings information to account for auto-
correlation.
Once the load detection procedure has been established, the oscillation de-
tection procedure can be derived by monitoring if the number of load dis-
turbances exceed a threshold limit nlim = 10 over a supervision time
Tsup = 50Tu, where Tu is the ultimate period of the process (or, alternatively
Tsup = 50Ti). Thus, if at least nlim load disturbances are detected during the
last interval of duration Tsup, it is concluded that an oscillation is present.
For a more practical implementation of the procedure, it is suggested to make
an exponential weighting of the detections. Thus, the following recursive pro-
cedure can be applied at every sampling instant:

1. if a load is detected then load = 1 else load = 0;
2. x := γx + load ;
3. if x ≥ nlim then conclude that an oscillation is present.

The value of γ can be selected as

γ = 1 − ∆t

Tsup
(8.67)

where ∆t is the sampling time.
An alternative strategy is proposed in (Forsman and Stattin, 1999). It consists
of considering separately the error signal when it is positive and when it
is negative and of determining the periodicity of the two parts in terms of
the integrated error between successive zero crossings and in terms of the
time intervals between successive zero crossings. By considering the notation
depicted in Figure 8.5, the following definitions can be applied:

Ai :=
∫ t2i+1

t2i

|e(τ)|dτ Bi :=
∫ t2i+2

t2i+1

|e(τ)|dτ i = 0, 1, . . . , N/2 (8.68)

where N > 20 is suggested. Then, define

hA(N) := �

{
i < N/2 : α <

Ai+1

Ai
<

1
α
∧ γ <

δi+1

δi
<

1
γ

}
(8.69)

and

hB(N) := �

{
i < N/2 : α <

Bi+1

Bi
<

1
α
∧ γ <

εi+1

εi
<

1
γ

}
(8.70)



8.4 Deterministic Performance Assessment 225

A

B B
0

0A

0

0 1

1

1

e(t)

t

1

t3t2 t 4t1t0

Fig. 8.5. Notation for the alternative method for oscillations detection

where �S denotes the number of elements of the set S and α and γ are tuning
parameters to be selected as

α ∈ [0.5, 0.7] γ ∈ [0.7, 0.8] γ > α. (8.71)

The oscillatory behaviour of the control system can be detected by calculating

h(N) =
hA(N) + hB(N)

N
. (8.72)

In particular, loops having h > 0.4 have oscillations and should be better
examined. If h > 0.8, then the loop is definitively oscillatory. Intermediate
situations may arise.
It can be deduced that this method requires the tuning of additional param-
eters and the result is not always easy to interpret. However, it has the capa-
bility to detect different type of oscillations and therefore it can be usefully
adopted in practical cases.

Oscillation Diagnosis

As already mentioned, once an oscillation has been detected, it is important
to diagnose its cause in order to take the necessary corrective action. Indeed,
there are several possible reasons for an oscillatory behaviour of the control
loop. For example, an oscillatory load might disturbing the monitored loop.
In this case, if the oscillation frequency is low (with respect to the closed-loop
bandwidth) it can be efficiently handled by the feedback control system, while
if it is high, it should be appropriately filtered in the controller so that it is
not transferred to the actuator (see Chapter 2), possibly reducing its life-span.
The worst case occurs if the oscillation frequency is close to the critical fre-
quency of the loop transfer function, because in this case it might be amplified
by the control system. In this case the controller should be retuned (or the
source of disturbance should be eliminated).
Another possible source of an oscillatory control loop is a too aggressively
tuned controller. This fact implies that in many cases operators detune the
controller when they detect an oscillatory behaviour of the control system.
However, it is recognised in the literature that the most common reason for
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oscillations is an excessive (static) friction in the valve (Hägglund, 1995). In
this case detuning the controller is not appropriate and valve maintenance
should be performed.
In order to provide valid tools for oscillation diagnosis, various solutions have
been proposed in the literature (see, for example, (Thornhill and Hägglund,
1997; Taha et al., 1996)). In particular, based on the above considerations, a
significant effort has been provided by researchers in order to detect the pres-
ence of stiction in the valves (Choudhury et al., 2005). Different approaches
have been followed. For example, the use of a nonlinearity index, based on the
determination of the squared bicoherence, has been proposed in (Choudhury
et al., 2004) (note that the occurrence of oscillations can be determined also
by the presence of hysteresis and dead-band in the loop). Alternatively, in
(Horch, 1999), it is proposed to analyse the cross-correlation between the
controller output and the process output and in (Horch, 2001) it is suggested
to exploit the different probability distributions of the first derivative of the
oscillatory process output in case of an aggressive control and in case of the
presence of stiction (the second derivative can be used if the process is non
self-regulating).
A very simple approach is proposed in (Singhal and Salsbury, 2005). It is
based on the fact that an aggressive control results in a sinusoidal control
error signal, while for a sticking valve the discontinuous process input signal
causes a piecewise exponential control error signal. Thus, a positive (or neg-
ative) half period of the oscillation is considered and the ratio of the area
before and after the peaks is calculated. If the value of the ratio is close to
one it is concluded that the controller is aggressive while if it is greater than
one it is concluded that stiction is present.
By following the same idea of evaluating the shape of the oscillation, a tech-
nique based on comparing the oscillatory response to a sine wave, to a tri-
angular wave and to the output response of a FOPDT process under relay
control (see Section 7.2.2) is presented in (Rossi and Scali, 2005). Note that
the last two cases are associated with the presence of stiction.
Finally, a technique based on the analysis of the input-output characteristics
of the valve, i.e., of the plot of the valve position versus the controller out-
put, is proposed in (Yamashita, 2006). Note that if the valve position is not
available, it can be substituted with the corresponding flowrate. In any case,
it is recognised that there is not a method that is capable to definitively solve
the problem and therefore it is wise to suitably integrate some of them in a
monitoring tool (Rossi and Scali, 2005).
Note that a method for the compensation of the static friction of pneumatic
control valves has been proposed in (Hägglund, 2002).

Abrupt Load Disturbance Detection

In addition to detect the occurrence of a load disturbance (see the previous
sections), it is often necessary to verify if its dynamics is sufficiently exciting



8.4 Deterministic Performance Assessment 227

for the control loop. This is of particular concern if an adaptive control law
is implemented (Hägglund and Åström, 2000), but it is useful also in the
performance assessment context, as it will be shown in the next sections (see
also Section 5.6).
In order to detect an abrupt (i.e., step-like) load disturbance, an idea derived
from the analysis presented in (Hägglund and Åström, 2000) can be applied.
In particular, the control variable and process variable signals can be high-pass
filtered, according to the expressions (for simplicity, the Laplace transform of
the signals is employed):

Uhp(s) =
s

s + ωhp
U(s) Yhp(s) =

1
K

s

s + ωhp
Y (s) (8.73)

where K is the process gain (which can be derived by considering the steady-
state values of the signals) and its use is for an appropriate scaling of the
signals. The frequency ωhp can be chosen to be inversely proportional to the
integral time constant Ti. Then, the load disturbance is considered to be
abrupt if the obtained signals exceed a given threshold. This can be fixed as a
3% of the amplitude of the disturbance, which can be evaluated by considering
the initial and the final steady-state values of the control variable.

Aggressive Controller Detection

The detection of an aggressive controller can be made through the detection
of an oscillatory behaviour of a control loop in the presence of an abrupt
set-point change or load disturbance. For this purpose, a statistically-based
approach has been proposed in (Miao and Seborg, 1999). It consists of calcu-
lating the autocorrelation of either the controlled variable or the control error.
The sample autocorrelation coefficients are determined as:

ρk =
∑N−k

t=1 (z(t) − z̄)(z(t + k) − z̄)∑N
t=1(z(t) − z̄)2

, (8.74)

where z(t), t = 1, . . . , N is the evaluated time series data and z̄ is the sample
mean for the N samples. An oscillation index is then calculated as the decay
ratio of the obtained autocorrelation function. It is defined as

R =
a

b
, (8.75)

where a is the distance from the first maximum to the straight line connect-
ing the first two minima and b is the distance from the first minimum to the
straight line that connects the first coefficient of the autocorrelation function
to the first maximum (see Figure 8.6). If less than two minima exist in the
autocorrelation function, the value of R is simply set to zero.
It is worth stressing that the algorithm requires a sufficiently long data col-
lection period in order to have at least five cycles of (damped) oscillations. By
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Fig. 8.6. Calculation of the oscillation index R = a/b

considering that it is of interest to detect oscillations with a frequency around
the ultimate frequency of the process (as already mentioned, low-frequency
oscillations are compensated by the feedback controller while high-frequency
oscillations can be easily filtered), the data collection period can be initially
set to 50Ti, where Ti is the integral time constant of the PI(D) controller.
If in this period a sufficient number of oscillations is not detected, then the
period should be increased to 250Ti. Note also that the collected data should
be appropriately filtered to remove the measurement noise.
An alternative index, called the Area Index (AI ), whose aim is to estimate
a generalised damping index of the closed-loop system has been proposed
in (Visioli, 2006). It is based on the analysis of the control signal u(t) that
compensates for an abrupt load disturbance d occurring on the process. In
particular, the new steady-state value achieved by the control signal after the
transient load disturbance response is denoted as ū. The time instant in which
the step load disturbance occurs is denoted as t0 (note that the value of t0
does not need to be known) and t1, . . . , tn−1 are the subsequent time instants
in which u(t) = ū. Finally, the time instant in which the transient response
ends and the manipulated variable attains its steady-state value ū is denoted
as tn. From a practical point of view, the value of tn can be selected as the
minimum time after that the control signal u(t) remains within a one per-
cent range of ū. The area delimited by the function u(t) and ū between two
consecutive time instants ti and ti+1 are defined as:
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Ai :=
∫ ti+1

ti

|u(t) − ū|dt. (8.76)

The introduced notation is depicted in Figure 8.7. The Area Index AI is
calculated by first eliminating the area A0, i.e., the area between the time
instant in which the step load disturbance occurs and the first time instant in
which it is u(t) = ū. Then, the the ratio between the maximum value of the
determined areas and their sum is determined, by taking into account that
the last area An−1 has to be excluded from the computation of the maximum
area. In case during the overall transient response we have just once or we
never have u(t) = ū, the Area Index is simply set to one. Formally, the Area
Index is therefore defined as:

AI :=

⎧⎨
⎩

1 if n < 3
max{A1, . . . , An−2}∑n−1

i=1 Ai

elsewhere . (8.77)

From Formula (8.77) it can be trivially deduced that the value of AI is always
in the interval (0, 1]. The significance of the devised index can also be evaluated
by performing the following analysis. Consider the transfer function T (s) from
the load disturbance signal (acting at the process input) to the manipulated
variable (i.e., the controller output) in a standard unitary-feedback control
system:

T (s) := − C(s)P (s)
1 + C(s)P (s)

(8.78)

and assume that T (s) has a pair of complex conjugate dominant poles, i.e.,
it can be well-approximated by the following transfer function (note that this
is not always the case as it will be discussed in Section 8.4.3):

T̃ (s) := − 1
T 2

1 s2 + 2ξT1s + 1
. (8.79)
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If the Area Index AI is calculated by considering the step response of T̃ (s)
with different values of T1 and ξ ∈ (0, 1], it results that the value of AI is
independent of the value of T1 and depends only on the value of the damping
factor ξ. The relation between ξ and AI is plotted in Figure 8.8. It appears
that the more closely the value of AI approaches zero the more the control
loop is oscillatory, whereas the more closely the value of AI approaches one,
the more the control loop is sluggish.
It has to be noted that when the technique has to be applied in practical
cases, noise has to be considered. As the Area Index is determined off-line,
a standard filtering procedure can be applied before calculating the different
areas. Alternatively, it is sufficient to discard from the analysis those areas Ai

whose value is less than a predefined threshold (because they are actually due
to the noise). This threshold can be determined by considering the control
signal for a sufficiently long time interval when the process is at an equilib-
rium point and by determining the maximum area between two consecutive
crossings with respect to its steady state value (the latter can be calculated
as the mean value of the control signal itself in the considered time interval).
Indeed, this procedure is actually similar to the one based on the concept of
noise band (Åström et al., 1993). In any case, as the overall procedure is based
on the calculus of integrals, it is inherently robust to the noise.
It is worth stressing again that both the oscillation index R and the area
index AI relies on the estimation of an abrupt load detection procedure like
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that described in the previous section. Note that in this context a load dis-
turbance is considered to be abrupt when its dynamics is much faster than
the dynamics of the closed-loop system.

Sluggish Controller Detection

Very often in practical cases there is not a sufficient time to optimise the
controllers during the installation of the plant. Thus, the parameters of the
controllers are usually tuned in a very conservative way in order to avoid
problems with possible changes of the operating conditions.
A methodology to (automatically) detect sluggish control loops has been pre-
sented in (Hägglund, 1999) and further discussed in (Hägglund, 2005; Kuehl
and Horch, 2005). It is based on the fact that, in the presence of an abrupt
stepwise load disturbance, a sluggish response is characterised by the fact that
the first time derivative of the manipulated variable and of the process output
signals have the same sign for a large period. Thus, it is sensible to apply to
the transient response the following calculation:

tpos =
{

tpos + ∆t if ∆u∆y > 0
tpos if ∆u∆y ≤ 0 (8.80)

tneg =
{

tneg + ∆t if ∆u∆y < 0
tneg if ∆u∆y ≥ 0 (8.81)

where ∆t is the sampling time and ∆u and ∆y are the increments of the
manipulated variable and of the process output respectively. Then, the so-
called Idle Index can be determined as

II =
tpos − tneg

tpos + tneg
. (8.82)

The Idle Index can be calculated also recursively by applying the following
algorithm at every sampling instant:

if ∆u∆y > 0 then s = 1
else if ∆u∆y < 0 then s = −1
else s = 0

if s �= 0 then II = γII + (1 − γ)s.

Parameter γ determines the time horizon in the filter and can be related to
the supervision time Tsup = tpos + tneg of off-line calculation by means of the
following relation:

γ = 1 − ∆t

Tsup
. (8.83)

Since it is based on the increments of the signals, the procedure is quite sensi-
tive to the measurement noise. For this reason it is necessary to appropriately
filter the two signals (note that if the off-line procedure is applied a noncausal
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filter can be adopted). Different methods in this context have been discussed in
(Kuehl and Horch, 2005). For example, the use of a low-pass filtering strategy
with triggered reinitialisation is proposed. It consists of filtering the signals
by a standard low-pass filter, but when the deviation between the input and
output of the filter exceeds a given threshold ε, then the filter is reinitialised
with the current signal value (this is done in order to avoid to soften too much
the signals and therefore to avoid an incorrect calculation of the Idle Index).
The value of ε can be set in the range (0.4σ, 0.6∆d), where σ denotes the stan-
dard deviation of the noise and ∆d is the typical size of load disturbances.
Alternatively, a linear regression approach can be employed, namely, a poly-
nomial is fitted to the data in the least-squares sense (a sensible polynomial
order is ten), and an approach based on wavelet analysis (Daubechies, 1992)
can be considered as well. Finally, quantisation of the already filtered signals
is suggested.
In any case, it is evident that the value of II is always in the interval [−1, +1]
and a positive value close to one indicates that the control loop is sluggish. The
problem associated with the use of the Idle Index is that a negative value close
to -1 might be obtained both from a well-tuned loop and from an oscillatory
loop. Thus, an oscillation detection technique has to be used in conjunction
with the Idle Index approach.

8.4.2 Optimal Performance for Single-loop Systems

The achievable optimal performance in terms of integrated absolute error
(IAE) for the set-point response has been investigated in (Huang and Jeng,
2002). In particular, a general controller transfer function

C(s) =
Kc(amsm + am−1s

m−1 + · · · + a1s + 1)
s(bnsn + bn−1sn−1 + · · · + b1s + 1)

(8.84)

and a general process transfer function

P (s) =
K(τmsm + τm−1s

m−1 + · · · + τ1s + 1)
Tnsn + Tn−1sn−1 + · · · + T1s + 1)

e−Ls (8.85)

are considered. Then, the loop transfer function L(s) := C(s)G(s) that min-
imises the performance index

J =
∫ ∞

0

|e(t)|dt (8.86)

is searched by using the simplex method. If a first-order loop transfer function
is considered, the optimal transfer function results to be:

L∗(s) =
0.76(1 + 0.47Ls)

Ls
(8.87)
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It is worth noting that a biproper transfer function has been considered since
the presence of an additional (high-frequency) filter that have to be used to
make the controller proper does not influence significantly the result. The cor-
responding optimal value of the integrated absolute error is J∗ = 1.377L.
Similarly, if a second-order loop transfer function is considered, the optimisa-
tion method results in

L∗(s) =
0.83(1 + 0.70Ls + 0.18L2s2)

Ls(1 + 0.30Ls)
(8.88)

and the corresponding value of J∗ is 1.314L. Then, for a third-order transfer
function it is

L∗(s) =
0.84(1 + 1.71Ls + 0.97L2s2 + 0.25L3s3)

Ls(1 + 1.26Ls + 0.41L2s2)
(8.89)

and J∗ = 1.310L. By considering that the value of the optimal integrated
absolute error does not decrease by increasing again the order of the loop
transfer function, it is concluded that the minimum integrated absolute error
achievable by a simple unitary feedback loop is J∗ = 1.31L.
In case the process has a FOPDT or a SOPDT dynamics, the optimal loop
transfer function that can be obtained is the one shown in Expression (8.87)
and therefore the practically achievable optimal integrated absolute error is
J∗ = 1.38L.
By applying similar reasonings, it can be found that if the controller is re-
stricted to be of PI type, then the optimal performance for a FOPDT process
results to be

J∗
PI =

{
L(2.1038− 0.6023e−1.0695L/T ) for L/T ≤ 5
2.1038 for L/T > 5

(8.90)

where T is the process time constant. For a SOPDT transfer function, it is

J∗
PI =

{
L(α(ξ)L2/T 2 + β(ξ)L/T + γ(ξ)) for ξ ≤ 2.0
L(−0.0173L2/T 2

2 + 1.7749L/T2 + 2.3514) for ξ > 2.0 (8.91)

where ξ is the damping factor, T is the process time constant if Expression
(7.43) is considered, T2 ≤ T1 is the process time constant in Expression (7.42),
and

α(ξ) =
{

0.7444ξ3 − 1.4975ξ2 + 1.0202ξ − 0.2525 for ξ ≤ 0.7
0.0064ξ − 0.0203 for 0.7 < ξ ≤ 2.0

(8.92)

β(ξ) = 1.1193ξ−0.9339 (8.93)

γ(ξ) =
{−18.4675ξ2 + 17.9592ξ − 2.7222 for ξ ≤ 0.5
−0.0995ξ2 + 0.4893ξ + 1.4712 for 0.5 < ξ ≤ 2.0.

(8.94)
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Conversely, if a PID controller is considered, the following values result if the
process is of FOPDT type:

J∗
PID =

{
L(1.38 − 0.1134e−1.5541L/T ) for L/T ≤ 3
1.38 for L/T > 3

(8.95)

For a SOPDT transfer function, it is

J∗
PID =

{
L(2.1038− λ(ξ)e−µ(ξ)LT ) for ξ ≤ 1.1
L(2.1038− 0.6728e−1.2024LT2) for ξ > 1.1

(8.96)

where
λ(ξ) = 0.4480ξ2 − 1.0095ξ + 1.2904 (8.97)

µ(ξ) = 6.1998e−3.8888ξ + 0.6708. (8.98)

By means of the previous expressions, it is easy to evaluate the performance of
a given (PID) controller by comparing the obtained integrated absolute error
with the optimal achievable one.
It is also worth stressing that from the previous analysis, it can be deduced
that a PID controller is capable to provide virtually the optimal performance
for FOPDT processes (i.e., its efficiency is very close to 100%), while for
SOPDT processes it might be worth to considering a general structure con-
troller (the efficiency of the PID control is mostly around 65%). Further, it
appears that the use of the derivative action allows to significantly improve
the performance also for FOPDT processes (see Section 1.8).

8.4.3 PID Tuning Assessment

In practical cases it is very useful to assess the tuning of a PI(D) controller in
order to verify if a retuning of the controller should be performed. Obviously,
the assessment should be done with respect to the control specifications, since,
for example, achieving a satisfactory performance in the load disturbance re-
jection task requires in general a different tuning from that required to achieve
a satisfactory performance in the set-point following task. Further, various
kinds of operating data could be available for assessing the performance and
therefore there is the need of different techniques to be applied in different
contexts. Few of them are presented hereafter.

Assessment Based on Set-point Response Data

The methodology proposed in (Swanda and Seborg, 1999) is based on the
evaluation of set-point response data and it is related with the set-point re-
sponse performance of a PI controller.
The rationale of the technique is to compare the achieved performance with
that of a PI controller tuned with the Internal Model Control tuning rule
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Table 8.1. Classification of a PI controller set-point following performance

Class Ts IAEd overshoot

High performance ≤ 4.6 ≤ 2.8 *

Excessively sluggish > 13.3 > 6.3 ≤ 10%

Poorly tuned > 13.3 > 6.3 > 10%

based on a FOPDT process model (see (7.5.1)).
In this context, two indices are evaluated, namely, the dimensionless settling
time Ts and the dimensionless integrated absolute error IAEd. They are de-
fined as

Ts :=
ts

L
(8.99)

where L is the process dead time and ts is the measured settling time defined
as the time the process output takes to attain and remain inside a band whose
width is equal to ±10% of the amplitude A of the step input, and

IAEd :=
IAE
|A|L (8.100)

where IAE is the measured integrated absolute error. Based on the benchmark
values of Ts and IAEd obtained with the IMC design (high-order models
reduced to a FOPDT form have been also taken into account), Table 8.1
has been established to classify the performance of the adopted PI controller
(note that also the obtained overshoot is adopted as a performance index).
It is worth stressing that the method is useful also in those situations where
the a high performance results but the control requirements are not met. In
this case it can be deduced that a PI controller is not sufficient and a more
complex controller has to be considered.

Relay-feedback-based Approach

A method to assess the set-point following performance of a PI controller
based on the data collected during a relay-feedback experiment (see Chapter
7) has been presented in (Thyagarajan and Yu, 2003). It is based on the
evaluation shape of the process output when a relay-feedback is connected
in series with a standard PI controller (see Figure 8.9). If the process has a
FOPDT dynamics, three situations can arise. If the integral time constant is
(almost) equal to the process time constant, then the relay is actually applied
to an integral process whose transfer function is

C(s)P (s) =
Kp(Tis + 1)

Tis

K

Ts + 1
e−Ls =

KKp

Tis
e−Ls (8.101)
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yr PC

Fig. 8.9. Scheme for the relay-feedback-based approach for PI performance assess-
ment

where K, T and L are respectively the gain, the time constant and the dead
time of the process, and Kp and Ti are the proportional gain and integral time
constant of the PI controller. The output response is therefore triangular in
shape (namely, a series of upward and downward ramps), as shown in Figure
8.10. The half period of the relay response is equal to the dead time of the
process (i.e., L = Tu/2) and the slope of the process output corresponds to
K̄ := KKp/Ti (its peak value A is therefore equal to K̄L). Conversely, if the
process time constant is less than the integral time constant, the relay feed-
back response exhibits a convex rise and fall shape (see Figure 8.11). Finally, if
the process time constant is greater than the integral time constant, the relay
feedback response exhibits a concave rise and fall shape. However, depending
on the sharpness of the shape, two cases can be conveniently distinguished. If
the ratio Ti/T is greater than a critical value (Ti/T )c, then a sharp peak can
be observed (see Figure 8.12), otherwise, a rounded peak occurs (see Figure
8.13). The values of (Ti/T )c depending on the ratio L/T can be evaluated by
means of plot reported in (Thyagarajan et al., 2003).
At this point, it has to be highlighted that the minimum integrated abso-
lute error in the set-point step response is obtained when the integral time
constant is equal to the process time constant (i.e., Ti = T ) and the value
of K̄/L is equal to 1.68. This fact, together with the analytical expressions
of the output curves obtained in the different above mentioned cases, can be
exploited to establish a procedure that assess the controller performance and
retune the controller in order to achieve the minimum integrated absolute
error performance. Thus, if the shape of the output curve is a triangle, this
means that it is already Ti = T and therefore the proportional gain can be
optimised by applying the following steps:

1. Estimate the dead time L of the process by measuring the half period of
the relay response and measure the peak amplitude A.

2. Calculate K̄old = L/A.
3. Calculate K̄new = 1.68L.
4. Set the new value of the proportional gain Kp,new to Kp,oldK̄old/K̄new,

where Kp,old is the previously adopted value.

On the contrary, if the shape of the process output is similar to that of Figure
8.11, it means that Ti > T and therefore the following procedure has to be
applied.



8.4 Deterministic Performance Assessment 237

1. Estimate the dead time L of the process by measuring the interval between
a relay commutation and the successive peak amplitude of the process
output. Measure also the value of A and of the ultimate period Tu.

2. The values of K̄ (K̄ = K̄old) and of T can be derived by solving the
following two equations (note that the value of Ti is known):

Tu

4K̄
−

(
Ti − T

K̄

)(
1 − 2

1 + e−
Tu
2T

)
− A = 0, (8.102)

Tu/4 − L

K̄
−

(
Ti − T

K̄

) (
1 − 2e−

Tu/2−L
T

1 + e−
Tu
2T

)
− A = 0. (8.103)

3. Set the new value of the integral time constant Ti,new to T .
4. Calculate K̄new = 1.68L.
5. Set the new value of the proportional gain Kp,new to

(Kp,old)(Ti,new)(K̄old)
(Ti,old)(K̄new)

.

The initial estimates for K̄ and T in the numerical procedure that has to be
applied to solve Equations (8.102) and (8.103) can be taken as K̄ = L/A and
T = 0.8Ti.
The same procedure has to be applied if the shape of the relay output is
similar to that of Figure 8.12 (i.e., Ti < T ) and it is therefore found that
(Ti/T )c ≤ (Ti/T ). The only difference is that the initial estimate of T has to
be set to 1.2Ti.
Finally, if the relay output shape is similar to that shown in Figure 8.13 and
therefore (Ti/T )c > (Ti/T ), the following algorithm has to be applied.

1. Estimate the (approximate) dead time L∗ of the process by measuring
again the time elapsed from zero to peak value of the process output.
Measure also the value of A and of the ultimate period Tu.

2. The values of K̄ (K̄ = K̄old) and of T can be derived by solving the
following two equations (note that the value of Ti is known):

− Tu

4K̄
− T

K̄

(
1 + ln

(
2(T − Ti)

T (1 + e−
Tu
2T )

))
+

T − Ti

K̄
− A = 0, (8.104)

Tu/4 − L

K̄
−

(
Ti − T

K̄

) (
1 − 2e−

Tu/2−L
T

1 + e−
Tu
2T

)
− A = 0. (8.105)

3. Set the new value of the integral time constant Ti,new to T .
4. Determine L from the following equation:

L = L∗ − T

(
ln

(
2(T − Ti)

T (1 + e−
Tu
2T )

))
. (8.106)
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Fig. 8.10. Process output (solid line) and relay output (dashed line) when the
process time constant is equal to the integral time constant
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Fig. 8.11. Process output (solid line) and relay output (dashed line) when the
process time constant is less than the integral time constant
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Fig. 8.12. Process output (solid line) and relay output (dashed line) when the
process time constant is greater than the integral time constant (and (Ti/T ) >
(Ti/T )c)
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Fig. 8.13. Process output (solid line) and relay output (dashed line) when the
process time constant is greater than the integral time constant (and (Ti/T ) <
(Ti/T )c)
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5. Calculate K̄new = 1.68L.
6. Set the new value of the proportional gain Kp,new to

(Kp,old)(Ti,new)(K̄old)
(Ti,old)(K̄new)

.

In (Thyagarajan et al., 2003) it has been shown that the methodology is
effective also for higher-order processes (although the achieved performance
is obviously suboptimal). However, being based on the use of a relay-feedback
test, it is sensible to the measurement noise and therefore the noise filtering
procedure that has to be adopted in practical cases has to be selected carefully.

Assessment of Load Disturbance Rejection Performance

An approach to assess the load disturbance rejection performance of a PI con-
troller (in terms of the integrated absolute error IAE) has been proposed in
(Visioli, 2006). It is based on the simultaneous evaluation of the Area Index
and of the Idle Index when a stepwise load disturbance occurs. As a result,
guidelines on how to improve the controller tuning are given.
Actually, it is evident that a well-tuned controller gives a low value of the
Idle Index II and at the same time a medium value of the Area Index AI ,
as this means that the control loop is neither sluggish nor oscillating. How-
ever, evaluating the values of the two indexes can give indications on how
to improve the tuning. Guidelines in this context have been derived from the
analysis of different processes with a FOPDT transfer function and with dif-
ferent normalised dead times. In particular, having applied the methodology
presented in (Silva et al., 2002), the set of stabilising PI controllers have been
determined and for each PI controller determined in this way, a unit step
load disturbance response have been simulated and the corresponding values
of AI , II and IAE have been computed. Based on the results obtained, the
rules presented in Table 8.2 have been devised in order to assess the tuning
of the PI parameters. The value of the Area Index is considered to be low if
it is less than 0.35, medium if it is 0.35 < AI < 0.7 and high if it is greater
than 0.7. The value of the Idle Index is considered to be low if it is less than
-0.6, medium if it is −0.6 < II < 0 and high if it is greater than zero.
Although these rules might appear somewhat intuitive, it is worthy to discuss
two of them in some detail. First, the case when the value of AI is low and the
value of II is medium/high is examined, because these seem to be two results
that indicate an oscillatory loop from one side (AI ) and a sluggish loop from
another side (II ). The situation can be evaluated by considering the following
process

P (s) =
1

10s + 1
e−5s (8.107)

controlled by a PI controller whose parameters are Kp = 1.81 and Ti =
20 (note that the parameters that provide the minimum IAE of 6.11 are



8.4 Deterministic Performance Assessment 241

Table 8.2. Rules for the assessment of the PI tuning. (*): an additional test is
useful (see the text).

Value of AI Value of II Tuning assessment

high high Kp too low, Ti too high

high low Kp too low

medium/high medium Kp too low, Ti too low

medium low Kp ok, Ti ok

low medium/high Ti too high

low low Kp too high and/or Ti too low (*)

Kp = 1.81 and Ti = 10.36 with corresponding values of AI = 0.61 and
II = −0.71). The unit step load disturbance response and the corresponding
control variable are plotted in Figure 8.14. The resulting values of the Area
Index and of the Idle Index are AI = 0.14 and II = −0.21 respectively
(while IAE = 11.03). It appears that in this case the low value of AI is not
associated to an oscillatory loop but to a control loop in which the dynamics
of the complementary sensitivity function (see (8.79)) is not dominated by a
pair of complex conjugate poles.
Thus, although in this case the Area Index is not indicative of the damping
factor of the closed-loop system, it gives the important information that the
value of the integral time constant is too high. It has to be noted that this
conclusion cannot be drawn easily if a technique that reveals an oscillatory
behavior of the manipulated variable (for example, by considering the auto-
correlation function) is employed only. For example, the method proposed in
(Miao and Seborg, 1999) gives almost the same oscillation index R in the
two cases of Ti = 10.36 and Ti = 20 (it results respectively R = 0.37 and
R = 0.39 if the control variable is analysed and R = 0.08 and R = 0 if
the process output is analysed; that is, no significant oscillation is actually
detected in both cases).
The second case that is worthy to be discussed is when both values of AI and
II are low. This means that the control loop is too oscillatory and this fact
is motivated by a high value of the proportional gain of the controller and/or
by a low value of the integral time constant. In order to provide a possible
additional information on the value of Ti it is useful to calculate another simple
index related to the process output signal. This fact is explained by the results
shown in Figures 8.15 and 8.16 where again the process modelled by transfer
function (8.107) has been considered. In the first case the PI parameters are
Kp = 3 and Ti = 20 and therefore the oscillatory response is caused by a too
high value of the proportional gain.
The resulting indexes are AI = 0.19 and II = −0.9 (the resulting integrated
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absolute error is IAE = 9.75). In the second case the PI parameters are
Kp = 2.2 and Ti = 6.5 and therefore the oscillatory response is caused by
both a too high value of the proportional gain and a too low value of the
integral time constant. The resulting indexes are AI = 0.23 and II = −0.64
(the corresponding integrated absolute error is IAE = 14.02).
It appears that the two considered indexes are not sufficient to distinguish
the two situations. However, a look at the process output functions suggests
to calculate a new index (called Output Index OI ), namely, the ratio between
the sum of the negative areas with respect to the final steady-state value and
the sum of all the areas with the exception of the first one (note that a positive
step load disturbance has been here assumed without loss of generality). In
case the process output does never intersect its steady-state value, it has to be
set simply OI = 0. This choice is motivated by the fact that when both Kp and
Ti are high, the dynamics of the transfer function from the load disturbance
to the process output is not dominated by a pair of complex conjugate poles
only. The resulting values of OI are 0.26 and 0.56 for the first and second case
respectively.
Summarising, when both the values of the Area Index and of the Idle Index are
low it is convenient to evaluate the devised Output Index. In case OI < 0.35 it
can be concluded that both the proportional gain and integral time constant
values are too high. Otherwise, the oscillatory response is caused by a too
high value of Kp and/or a too low value of Ti.
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Fig. 8.14. Example of a load disturbance response for a too high value of Ti
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Fig. 8.15. Example of a load disturbance response for a too high values of Kp and
Ti
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Fig. 8.16. Example of a load disturbance response for a too high value of Kp and
a too low value of Ti
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Fig. 8.17. Load disturbance response for P1(s) with Kp = 4.61 and Ti = 6.06
(IAE = 1.42, AI = 0.61, II = −0.81)

It is worth noting at this point that, with the decreasing of the normalised
dead time, the PI parameters that minimise the IAE value tend to produce a
more oscillatory control variable. Applications where a too oscillatory control
variable is not desirable can be easily handled by the devised methodology, as
the range of the medium values of the Area Index can be suitably modified to
address the operator specifications. Further, it has to be taken into account
that, as already mentioned, an oscillatory response can be caused either by
unsuitable controller parameters or by the excessive presence of stiction in
the actuators. Thus, before applying the devised methodology it is wise to
determine if valves require maintenance. This can be done by applying one
(or more) of the different algorithm proposed for this purpose (see Section
8.4.1).
As an illustrative example of the combined use of the Area Index and of the
Area Index, consider the following process:

P1(s) =
1

10s + 1
e−2s (8.108)

The PI parameters that minimise the IAE index are Kp = 4.61 and Ti = 6.06
and the corresponding indexes are IAE = 1.42, AI = 0.61 and II = −0.81.
Thus, according to Table 8.2, the proposed method suggests correctly that
the controller is well tuned. The unit step load disturbance response, together
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Fig. 8.18. Load disturbance response for P1(s) with Kp = 2 and Ti = 6.06 (IAE =
2.02, AI = 0.97, II = −0.68)

with the corresponding manipulated variable signal is plotted in Figure 8.17.
Then, it has been fixed Kp = 2 (keeping the same value as before of the
integral time constant). The performance obtained is shown in Figure 8.18
and the calculated indexes are AI = 0.97 and II = −0.68. Thus, the too low
value of the proportional gain is recognised by the devised technique.
As another example, the following fourth-order process has been considered:

P2(s) =
1

(s + 1)4
(8.109)

Note that (8.109) can be approximated by a FOPDT transfer function with
a time constant T = 2.1 and a dead time L = 1.9. The optimal tuning
is Kp = 1.65 and Ti = 4.15, which implies a minimum IAE of 2.79 and
AI = 0.36 and II = −0.80.
The control system response to a unit step load disturbance is plotted in
Figure 8.19. By decreasing both values of the proportional gain and of the
integral time constant to Kp = 1.2 and Ti = 2 the results shown in Figure
8.20 are obtained. The corresponding values of the considered indexes are
IAE = 4.07, AI = 0.40 and II = −0.55. From Table 8.2 it results that both
the PI parameters are too low.
It should be noted that whereas the technique proposed confirms that the
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Fig. 8.19. Load disturbance response for P2(s) with Kp = 1.65 and Ti = 4.15
(IAE = 2.79, AI = 0.36, II = −0.80)

tuning is good the achieved integrated absolute error value is not far from the
optimum. Note also that, being the overall technique based on the closed-loop
systems, the effects of model uncertainties (i.e., the discrepancy between the
actual dynamics and the FOPDT model on which the method is based) are
reduced.
Experimental results for a level control task have been obtained by means of
the laboratory equipment described in Section A.1.
A single tank has been employed and a second inflow (driven by a second
pump) has been adopted as a disturbance input. In particular, when the sys-
tem is at the steady state with the process output sensor at 3 V, the second
pump is activated by applying a step signal from 0 to 1.8 V. A time delay of
10 s has been added via software to the plant input in order to increase the
normalised dead time of the system. Three experiments are presented here-
after. In the first experiment, the PI parameters have been set to Kp = 0.5
and Ti = 50. The load response is plotted in Figure 8.21. The abrupt load
response detection method described in Section 8.4.1, based on a high-pass
filtering of the process variable and of the control variable, has been applied,
giving the result shown in Figure 8.22. It appears that a sufficiently abrupt
load change has been detected, so that the proposed method can be applied.
The calculated indexes are AI = 1 and II = 0.22 (the integrated absolute
error is 106.5) and therefore Table 8.2 suggests to increase the proportional
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Fig. 8.20. Load disturbance response for P2(s) with Kp = 1.2 and Ti = 2 (IAE =
4.07, AI = 0.40, II = −0.55)

gain value and to decrease the integral time constant. With the values of the
PI parameters modified to Kp = 1 and Ti = 25 the response shown in Figure
8.23 has been obtained. In this case it results AI = 0.25 and II = −0.73
(and IAE = 49.17). The oscillatory response is detected by the low value of
the Area Index and according to Table 8.2 the value of the proportional gain
has to be decreased. This fact is confirmed by the third experiment, where
Kp = 0.8 and Ti = 25 have been selected. The corresponding response is
plotted in Figure 8.24. It is AI = 0.40 and II = −0.69, indicating that the
PI controller is well tuned, as it is ascertained also by the obtained value of
IAE = 34.83. The experimental results are summarised in Table 8.3 and the
effectiveness of the devised methodology can be deduced.

Table 8.3. Summary of the experimental results for the method for the PI controller
tuning assessment

Kp Ti AI II IAE

0.5 50 1 0.22 106.5

1 25 0.25 -0.73 49.17

0.8 25 0.40 -0.69 34.83
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Fig. 8.21. Experimental load disturbance response with Kp = 0.5 and Ti = 50
(IAE = 106.5, AI = 1, II = 0.22)
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Fig. 8.22. Result of the evaluation of an abrupt load change in the case of the
experimental result for Kp = 0.5 and Ti = 50. Solid line: filtered process variable;
dashed line: filtered control variable; dotted line: threshold.
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Fig. 8.23. Experimental load disturbance response with Kp = 1 and Ti = 25
(IAE = 49.17, AI = 0.25, II = −0.73)
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Fig. 8.24. Experimental load disturbance response with Kp = 0.8 and Ti = 25
(IAE = 34.83, AI = 0.40, II = −0.69)
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Discussion

From the presented analysis, it appears that there are different methodologies
for different performance requirements. In a practical context, the user should
select the appropriate technique for a given application.
In any case, it is worth highlighting that the most relevant results deal with
PI controllers and assume that the process is described by a FOPDT dynam-
ics (although they are robust with respect to modelling uncertainties). Thus,
there is still the need to devise effective methods that are capable to pro-
vide the tuning assessment for PID controllers (where the derivative action is
employed) and for processes with integral and oscillatory dynamics.

8.5 Conclusions and References

The problem of how assess the performance of a given control system has been
addressed in this chapter. It has been stressed that different methodologies are
available for different performance requirement. Indeed, it is believed that a
performance assessment package should actually consist of a set of functions,
each dealing with a particular situation. Thus, the role of each method in a
given situation should be clearly outlined.
The literature presents a large number of contributions on the performance
assessment problem and the research effort is continuously increasing in the
recent years. In this chapter just some ideas on how the problem can be
tackled in practical cases have been presented. For a closer investigation of
the topic, an excellent review can be found in (Jelali, 2006). Other reviews for
the minimum variance approach have been presented in (Qin, 1998; Harris et
al., 1999). An industrial perspective can be found in (Kozub, 2002; Paulonis
and Cox, 2003). Advanced methodologies have been presented in a special
issue of the International Journal of Adaptive Control and Signal Processing
published on September-November, 2003.



9

Control Structures

9.1 Introduction

One of the reasons for the great success of PID controllers is that they can
be employed also as a basic component for more advanced control systems
so that (relatively) complex control tasks can be addressed by still exploit-
ing the available know-how. This chapter focuses on two control structures
widely applied in industry, namely (series) cascade control and ratio control,
which are still the subject of new investigations in order to find methodologies
that allow the improvement of the performance and/or to simplify the overall
control system design.

9.2 Cascade Control

9.2.1 Generalities

In process control applications, the rejection of load disturbances is often of
main concern. In order to improve the performance for this task, the imple-
mentation of a cascade control system can be considered. In a cascade control
scheme the process has one input and two (or more) outputs. Indeed, in order
to provide an effective disturbance rejection, an additional sensor is employed
so that the fast dynamics of the process is separated as much as possible from
the slow dynamics (i.e., that with the slowest poles and the nonminimum-
phase part).
The typical series cascade control system is shown in Figure 9.1. For the sake
of simplicity, here only two nested loops are considered but the approach can
be generalised to more loops. The process transfer function is denoted by
P (s) = P2(s)P1(s), y1 is the primary output, y2 is the secondary output,
C2 is the secondary (or slave) controller and C1 is the primary (or master)
controller (it appears that the output signal of the master controller serves
as the set-point for the slave controller). Analogously, the inner loop is de-
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Fig. 9.1. Typical cascade control scheme

nominated as the secondary loop, while the outer loop is denominated as the
primary loop.
Intuitively, if P1(s) represents the slow dynamics of the process and P2(s) rep-
resents the fast dynamics, the effectiveness of the cascade control system is
due to the fact that disturbances affecting the (fast) secondary loop are effec-
tively compensated before they affect the main process output y1. Formally,
the transfer function from the load disturbance d to the process variable y1 is

T (s) :=
P1(s)P2(s)

1 + C2(s)P2(s) + C1(s)C2(s)P1(s)P2(s)
. (9.1)

The characteristic equation is therefore

1 + C2(s)P2(s) + C1(s)C2(s)P1(s)P2(s) = 0, (9.2)

while, if a conventional (single-loop) feedback control is employed, the char-
acteristic equation is

1 + C(s)P1(s)P2(s) = 0, (9.3)

where C(s) is the single-loop controller. When the dynamics of the secondary
loop is faster than the dynamics of the primary loop, the cascade control sys-
tem has improved stability characteristics and therefore a higher gain in the
primary loop can be adopted.
Based on this fact, it appears that the improvement in the cascade control per-
formance is more significant when disturbances act in the inner loop and when
the secondary sensor is placed in order to separate as far as possible the fast
dynamics of the process from the slow dynamics (Krishnaswami et al., 1990).
Actually, when the secondary process exhibits a significant dead time or there
is an unstable (positive) zero, the use of cascade control is not useful in gen-
eral (taking into account the additional cost due to the secondary sensor and
to the secondary controller). As an additional advantage, the nonlinearities of
the process in the inner loop are handled by that loop and therefore they are
removed from the more important outer loop.
In this context, the parameters of the overall control system should be selected
in order to provide a tight tuning of the inner loop (with respect to the outer
one). Note that the presence of an integrator in the inner loop is not strictly
necessary since the null steady-state error can be assured by the outer loop.
It is worth stressing that if integral action is employed both in the master and
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in the slave controller, the integrator windup should be carefully handled. In
particular, the saturation of the actuator requires that an anti-windup strat-
egy (see Chapter 3) is implemented for the secondary controller. However,
when the secondary controller attains a limit, the primary controller acts in
open-loop at the same time. A typical approach is therefore to stop the inte-
gration of the primary controller when the output of the secondary controller
attains its limits. This solution prevents the master controller from unneces-
sarily increasing its output and therefore forcing the primary controller to be
more saturated. However, a better solution is, when the output of the sec-
ondary controller attains its limit, to use the secondary process output as a
tracking signal for the primary controller. This solution is effective also in
providing a bumpless transfer when the secondary controller switches from
manual to automatic mode.
The design of the overall cascade control system is usually performed by first
tuning the secondary controller, based on the secondary process transfer func-
tion (the primary loop is placed in manual mode). Then, the primary controller
is tuned on the basis of the closed-loop transfer function of the secondary
loop in series with the primary process transfer function (which contains the
dominant dynamics, because of the tight tuning of the secondary loop). It
appears that the design is performed sequentially and therefore it is more
time-consuming than the design of a classical single-loop controller. There is,
therefore, the need to have automatic tuning functionalities that are poten-
tially able to provide a simultaneous tuning of the two controllers.

9.2.2 Relay Feedback Sequential Auto-tuning

A technique based on the relay feedback for the automatic tuning of a cascade
controller has been proposed in (Hang et al., 1994). It basically consists of
applying the standard relay feedback approach (see Chapter 7) first to the
secondary loop (with the primary loop placed in manual mode) and then to the
primary loop (with the secondary feedback controller already tuned). Actually,
any tuning rule based on the ultimate gain and the ultimate frequency of the
process can be applied in this context.
Remarkably, the ratio of the ultimate frequencies obtained in these two steps
can be adopted to assess whether a cascade controller is worth being applied
(since it indicates the ratio of the speeds of the loops). Further, a refined tuning
of the secondary controller can be performed (in closed-loop) by applying
again the relay feedback controller to the secondary loop with the primary
loop closed (i.e., with the PID controller previously tuned that acts as a
primary controller). The same refinement can be performed also on the master
controller.

9.2.3 Relay Feedback Simultaneous Auto-tuning

The method presented in the previous section has the disadvantage that a
sequential (and therefore time-consuming) tuning is actually performed. A
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Fig. 9.2. Scheme for the on-line tuning of the cascade controller

technique that allows the achievement of a simultaneous tuning of the two
controllers has been proposed in (Tan et al., 2000). Therein it is assumed that
the two controllers are already (roughly) tuned (mainly in order to stabilise
the process). Then, the scheme shown in Figure 9.2 is applied in order to tune
on-line the two controllers simultaneously. In particular, denote by C1,0(s)
and C2,0(s) the transfer functions of the two initial controllers and by ωu

the ultimate frequency obtained from the experiment. A Fourier or Spectral
analysis, with an appropriate weighting window, is then applied to the signals
r2 and y2 in order to determine Tr2y2,0(jωu), where Tr2y2 denotes the closed-
loop transfer function of the inner loop. Then, the frequency response of the
secondary process at ω = ωu can be derived as

P2(jωu) =
Tr2y2,0(jωu)

C2,0(jωu) (1 − Tr2y2,0(jωu))
. (9.4)

A desired frequency response T̄r2y2(jωu) has now to be specified by the user.
This can be done easily by considering a prototype first-order-plus-dead-time
(FOPDT) transfer function

T̄r2y2(s) =
1

T2s + 1
e−L2s. (9.5)

The (desired) values of the dead time and of the time constant can be selected,
starting from the relay feedback experiment, assuming that

Tr2y2,0(jωu) = γ + jθ. (9.6)

They can be fixed as

T2 =
0.5
ωu

√
1 − γ2 + θ2

(γ2 + θ2)
(9.7)

and

L2 =
1
ωu

arccos(γ − θωuT2). (9.8)

Once Tr2y2(jωu) has been determined, the frequency response of the new
secondary controller at ω = ωu can be calculated as

C2(jωu) =
T̄r2y2(jωu)

P2(jωu)
(
1 − T̄r2y2(jωu)

). (9.9)
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Starting from this expression and denoting C2(jωu) as α2 + jβ2, the param-
eters of the PID secondary controller (in ideal form) are then determined as:

Kp2 = α2, (9.10)

Ti2 = − α2

β2ωu
, (9.11)

Td2 = 0.25Ti. (9.12)

If a PI controller is employed, it can be simply set Td2 = 0, by keeping the
same values of the proportional gain and of the integral time constant.
A similar reasoning is applied in order to design the primary controller. After
having applied a Fourier or Spectral analysis to the signals r1 and y1 so
that Tr1y1,0(jωu) is derived, the frequency response of the primary process at
ω = ωu can be determined as:

P1(jωu) =
Tr1y1,0(jωu)

Tr2y2,0(jωu)C1,0(jωu) (1 − Tr1y1,0(jωu))
. (9.13)

Then, the frequency response prototype of the primary loop at ω = ωu, de-
noted as T̄r1y1(jωu) is determined as for the secondary loop (see (9.6)–(9.8)).
Finally, the frequency response of the new primary controller at ω = ωu is

C1(jωu) =
T̄r1y1(jωu)

P1(jωu)T̄r2y2(jωu)
(
1 − T̄r1y1(jωu)

). (9.14)

The PID controller parameters are finally determined by denoting C1(jωu) as
α1 + jβ1 and calculating

Kp1 = α1, (9.15)

Ti1 = − α1

β1ωu
, (9.16)

Td1 = 0.25Ti. (9.17)

As for the slave controller, a PI controller can be adopted simply by fixing
Td1 = 0.
In order to illustrate the methodology, the following example is provided.
Consider the processes

P1(s) =
1

(5s + 1)2
e−4s, (9.18)

P2(s) =
1

s + 1
e−0.2s. (9.19)
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Fig. 9.3. Process variable before (dashed line) and after (solid line) the relay feed-
back simultaneous auto-tuning

Initially, the tuning of the two controllers is

Kp1 = 1, Ti1 = 12, Td1 = 0, (9.20)

and
Kp2 = 0.5, Ti2 = 4, Td2 = 0. (9.21)

After the application of the methodology, the parameters of the PID con-
trollers are determined as (note that the derivative action of the secondary
controller is not adopted):

Kp1 = 1.18, Ti1 = 18.99, Td1 = 4.75, (9.22)

and
Kp2 = 0.56, Ti2 = 2.14, Td2 = 0. (9.23)

The process variable before and after the refinement of the tuning is plotted in
Figure 9.3. In particular, the experiment consists of applying in both cases a
unit step in the set-point signal at time t = 0 and a load disturbance unit step
at time t = 250. It appears that the performance has been improved signifi-
cantly both with respect to the set-point following and to the load disturbance
rejection task. However, it has to be stressed again that a (rough) tuning of
the two controllers has to be performed before applying the technique.
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9.2.4 Simultaneous Identification Based on Step Response

A technique based on the step response for the simultaneous identification
of the primary and of the secondary process has been presented in (Visioli
and Piazzi, 2006). It consists of applying a step signal to the process P (s). A
FOPDT transfer function of the fast dynamics of the process can be estimated
by evaluating the step response of P2(s), for example by applying the area
method (see Section 7.2.1).
At the same time, a model for the slow dynamics of the process can be esti-
mated by considering its input signal y2 and its output signal y1 and by apply-
ing a least-squares procedure, such as the one proposed in (Sung et al., 1998)
which is based on the integrated input and output signals and therefore it
is inherently robust to measurement noise (see again Section 7.2.1). The ob-
tained (possibly high-order) model can then be reduced if a tuning rule that
requires a FOPDT or a SOPDT model of the primary process is employed (see
the next sections). It has to be noted that, because of the different dynamics
of P2 and P1, the step response of P2 is indeed a sufficiently exciting signal to
be adopted as an input signal for the least-squares based estimation of P1(s).

9.2.5 Simultaneous Tuning of the Controllers

A methodology for the simultaneous tuning of the two controllers in the
cascade control system has been proposed in (Lee et al., 1998a). It is
based on the Internal Model Control (IMC) design methodology (Morari and
Zafiriou, 1989) and on the reduction of the controllers obtained by means
of a Maclaurin series expansion. In particular, the secondary process transfer
function can be written as

P2(s) = P2m(s)P2a(s) (9.24)

where P2a(s) is the all-pass portion of the transfer function containing all the
nonminimmum phase dynamics (P2a(0) = 1). Then, the desired inner loop
transfer function is specified as

T̄r2y2(s) =
P2a(s)

(λ2s + 1)n2
(9.25)

where λ2 is the user-chosen time constant of the IMC filter and the value of
n2 is selected in order to make the resulting controller proper. The secondary
controller can then be determined as

C2(s) =
P−1

2m(s)
(λ2s + 1)n2 − P2a(s)

. (9.26)

In order to approximate the controller obtained to a PID controller, the same
procedure already presented in Section 7.5.3 can be used, i.e., Expression
(9.26) can be rewritten as
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C2(s) =
k(s)
s

(9.27)

and expanding C2(s) in a Maclaurin series in s:

C2(s) =
1
s

[
k(0) + k′(0)s +

k′′(0)
2

s2 + · · ·
]

. (9.28)

Expression (9.28) is indeed a PID controller in ideal form with

Kp2 = k′(0)

Ti2 =
k′(0)
k(0)

Td2 =
k′′(0)
2k′(0)

.

(9.29)

An analogous procedure can be adopted for the design of the primary con-
troller. By assuming that the transfer function of the inner loop is (9.25), the
process model of the outer loop can be expressed as

P12(s) = P1(s)
P2a(s)

(λ2s + 1)n2
(9.30)

and it can be rewritten as

P12(s) = P12m(s)P12a(s), (9.31)

where again P12m(s) contains the invertible part of the model and P12a(s)
contains the nonminimum-phase part in all-pass form. Then, the desired outer
loop transfer function is specified as

T̄r1y1(s) =
P12a(s)

(λ1s + 1)n1
(9.32)

and therefore the primary controller transfer function is determined as

C1(s) =
P−1

12m(s)(λ2s + 1)n2

P2a(s) ((λ1s + 1)n2 − P12a(s))
. (9.33)

Finally, the controller transfer function can be reduced to a PID form by ap-
plying again the Maclaurin series expansion.
An interesting case that is worth analysing is when both processes are de-
scribed by a FOPDT transfer function, namely,

P1(s) =
K1

T1s + 1
e−L1s, P2(s) =

K2

T2s + 1
e−L2s. (9.34)

In this case, it is
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T̄r2y2(s) =
e−L2s

λ2s + 1
(9.35)

and

T̄r1y1(s) =
e−(L1+L2)s

λ1s + 1
. (9.36)

An explicit tuning rule can be therefore derived for both the primary and the
secondary controller:

Kp2 =
T2 +

L2
2

2(λ2 + L2)
K2(λ2 + L2)

Ti2 = T2 +
L2

2

2(λ2 + L2)

Td2 =
L2

2

6(λ2 + L2)

⎛
⎜⎜⎜⎝3 − L2

T2 +
L2

2

2(λ2 + L2)

⎞
⎟⎟⎟⎠

(9.37)

and

Kp1 =
T1 + λ2 +

(L1 + L2)2

2(λ1 + L1 + L2)
K1(λ1 + L1 + L2)

Ti1 = T1 + λ2 +
(L1 + L2)2

2(λ1 + L1 + L2)

Td1 =
λ2T1 −

(L1 + L2)3

6(λ1 + L1 + L2)

T1 + λ2 +
(L1 + L2)2

2(λ1 + L1 + L2)

+
(L1 + L2)2

2(λ1 + L1 + L2)
.

(9.38)

Similarly, tuning rules can be derived also by assuming that the two processes
are described by SOPDT transfer functions (Lee et al., 1998a).
In any case, it can be deduced that the design phase involves the selection
of the two time constants λ1 and λ2. In principle, they allow to handle the
trade-off between aggressiveness and robustness. Actually, since the Maclaurin
series expansion is eventually adopted to determine the two PID controllers,
the conclusions drawn in Section 7.5.5 should be considered. However, based
on many simulations, in (Lee et al., 1998a) the suggestion is to set

λ2 = 0.5L2 (9.39)

and
λ1 = 0.5(L1 + L2). (9.40)
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Fig. 9.4. Process variable obtained with the simultaneous tuning of the controllers

The following simulation result is provided in order to evaluate technique.
Consider again the process whose dynamics is described by the series of the
two transfer functions (9.18)–(9.19). If the method described in Section 9.2.4
is applied in order to identify simultaneously the two parts of the process,
two FOPDT transfer functions are derived. In particular, we obtain K2 = 1,
T2 = 0.99 and L2 = 0.21 for the secondary process and K1 = 1, T1 = 7.55
and L1 = 6.88 for the primary process. The resulting filter time constants are
therefore, according to Expressions (9.39)–(9.40), λ2 = 0.11 and λ1 = 3.55.
By applying the tuning rules (9.37)–(9.38), we obtain Kp2 = 3.31, Ti2 = 1.06,
Td2 = 0.07, Kp1 = 0.94, Ti1 = 10.02, and Td1 = 1.89. When a unit step in
the set-point signal is applied at time t = 0 and a load disturbance unit step
is applied at time t = 250, the resulting process variable is plotted in Figure
9.4. The effectiveness of the overall methodology is apparent.

9.2.6 Tuning of the General Cascade Control Structure

The approach presented in the previous section has been generalised in (Lee
et al., 2002), where also integral and unstable processes are considered. The
scheme devised exploits the presence of a set-point filter both in the primary
and in the secondary controller (see Figure 9.5). In particular, this is adopted
for unstable and integrating processes and for stable processes with poles near
zero, while for normal processes the same approach of the previous section has
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to be employed (and therefore the set-point filters are not used). Whether a
stable process is considered a normal process or a process with a pole near
zero depends on the design sense.
Restricting the analysis again to the case where both processes are described
by FOPDT transfer functions (9.34), explicit tuning rules for the secondary
and primary PID controllers result. They are (9.37) and (9.38) when normal
stable processes are considered, while when stable processes with poles near
zero are addressed:

Kp2 =
T2 + α − λ2

2 + L2α − 1
2L2

2

2λ2 + L2 − α
K2(2λ2 + L2 − α)

Ti2 = T2 + α − λ2
2 + L2α − 1

2L2
2

2λ2 + L2 − α

Td2 =
T2α −

1
6L3

2 − 1
2L2

2α

2λ2 + L2 − α

T2 + α − λ2
2 + L2α − 1

2L2
2

2λ2 + L2 − α

− λ2
2 + L2α − 1

2L2
2

2λ2 + L2 − α

(9.41)

and

Kp1 =
T1 + λ2 + β − λ2

1 + (L1 + L2)β − 1
2 (L1 + L2)2

2λ1 + L1 + L2 − β

K1(2λ1 + L1 + L2 − β)

Ti1 = T1 + λ2 + β − λ2
1 + (L1 + L2)β − 1

2 (L1 + L2)2

2λ1 + L1 + L2 − β

Td1 =
λ2T1 + λ2β + T1β −

1
6 (L1 + L2)3 − 1

2 (L1 + L2)2β
2λ1 + L1 + L2 − β

T1 + λ2 + β − λ2
1 + (L1 + L2)β − 1

2 (L1 + L2)2

2λ1 + L1 + L2 − β

−λ2
1 + (L1 + L2)β − 1

2 (L1 + L2)2

2λ1 + L1 + L2 − β

(9.42)

where

α = T2

⎡
⎣1 −

(
1 − λ2

T2

)2

e
−L2

T2

⎤
⎦ (9.43)

and

β = T1

⎡
⎣1 −

(
1 − λ1

T1

)2

e
−L1+L2

T1

⎤
⎦ . (9.44)

The set-point filters are selected as

F2(s) =
1

αs + 1
(9.45)
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Fig. 9.6. Process variable obtained with the general cascade control structure

and

F1(s) =
1

βs + 1
. (9.46)

Similarly to the case of normal processes, the closed-loop time constants λ1

and λ2 can be chosen as
λ2

L2
= 0.5 ÷ 1 (9.47)

and
λ1

L1 + L2
= 0.5 ÷ 1. (9.48)

The same process (9.18)–(9.19) of the previous sections are used to illustrate
the methodology. The technique described in Section 9.2.4 is applied again
for the simultaneous identification of the two processes. The values λ2 =
0.75L2 = 0.16 and λ1 = 0.75(L1 + L2) = 5.32 are selected. By applying
the tuning rules (9.41)–(9.44) we obtain α = 0.43, β = 7.29, Kp2 = 4.93,
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Ti2 = 0.51, Td2 = 0.07, Kp1 = 0.93, Ti1 = 9.75, and Td1 = 1.86. The process
output obtained is shown in Figure 9.6. It appears that a high-performance
load disturbance response is achieved. With respect to the method presented
in the previous section, as expected because of the presence of the set-point
filters, the rise time in the set-point step response is (significantly) increased
and the overshoot is reduced to zero.

9.2.7 Use of a Smith Predictor in the Outer Loop

A scheme based on a Smith predictor has been proposed in (Kaya, 2001)
and it is depicted in Figure 9.7. It appears that a Smith predictor scheme
(Palmor, 1996) is employed in order to compensate for the delay term in
the primary controller. An automatic tuning procedure, based on the use
of two sequential relay-feedback tests is proposed. In particular, a FOPDT
transfer function is first estimated for the secondary process by employing,
for example, an asymmetrical relay (see Section 7.2.2). The parameters of a
PI controller are selected consequently according to the tuning rules proposed
in (Zhuang and Atherton, 1993), which allows a minimisation of the ISTE
integral criterion. Then, again by adopting an asymmetrical relay, the process
seen by the primary controller C1 is identified. In particular, a SOPDT transfer
function parameters are estimated (see Section 7.3.2). In this phase the Smith
predictor scheme is not employed. Then, the delay free part of the model is
denoted by P12 and the dead time term is denoted by L. The parameters
of the PID primary controller (in ideal form) are finally selected in order to
minimise again the ISTE criterion and the Smith predictor based cascade
control scheme is implemented.
In order to verify the effectiveness of the devised scheme, it has been tested on
the same process (9.18)–(9.19) as before. The resulting PI/PID parameters are
Kp2 = 3.17, Ti2 = 1.05, Kp1 = 1.5, Ti1 = 8.22, and Td1 = 0.91. The process
output obtained is shown in Figure 9.8. Obviously, the control architecture is
more effective when a high normalised dead time is present in the secondary
process, although it has to be stressed that mismatches in the estimation of
the dead time term should be carefully handled in order to avoid a significant
degradation of the overall performance.

d

C 2 P1

y
1
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P2
r y

2 e Ls

e LsP

C1

Fig. 9.7. Smith predictor based cascade control structure
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Fig. 9.8. Process variable obtained with the Smith predictor based cascade control
scheme
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Fig. 9.9. Two-degree-of-freedom cascade control structure

The proposed control scheme has been further developed in (Kaya et al., 2005)
for stable processes and in (Kaya and Atherton, 2005) for integrating and
unstable processes. The tuning of the controllers is based on the so-called
standard forms (Dorf and Bishop, 1995), which allow the direct synthesis of
controllers that minimise integral performance indexes.
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Fig. 9.10. Alternative two-degree-of-freedom cascade control structure

9.2.8 Two Degree-of-freedom Control Structure

A two-degree-of-freedom cascade control structure, aiming at decoupling the
set-point tracking and the load disturbance rejection tasks has been proposed
in (Liu et al., 2005). Two schemes can be implemented in this context. They
are reported in Figures 9.9 and 9.10. Note that P1m and P2m denote models of
the primary and secondary processes P1 and P2 respectively, while Pm denotes
the model of the overall process P . Then F is a load disturbance estimator
(indeed, it acts as a secondary controller) and C is the primary controller used
for set-point tracking.
From Figure 9.9 it can be deduced that in the nominal case, i.e., when P1m

and P2m are perfect models of P1 and P2, there is an open-loop control from
the set-point r to the primary output y1 so that the nominal set-point response
and the inner loop load disturbance response are decoupled. The scheme of
Figure 9.10 has the advantage that an explicit model of the primary process
P1 is not required but, on the other side, when a load disturbance d occurs,
both the load disturbance estimator F and the primary controller C concur
in compensating it and therefore a performance degradation might appear.
In other words, the possible performance degradation in the load disturbance
response has to be accepted for a possibly easier and more effective implemen-
tation of the control architecture. In any case, the design of the two controllers
C and F is the same for both schemes.
The design of C is based on the minimisation of the H2 performance objec-
tive, as in the IMC approach. The transfer functions of the two processes are
rewritten as

P1(s) = K1

A1+(s)A1−(s)
B1(s)

e−L1s (9.49)

and

P2(s) = K2

A2+(s)A2−(s)
B2(s)

e−L2s (9.50)
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where A1+(0) = A1−(0) = B1(0) = 1, A2+(0) = A2−(0) = B2(0) = 1, and all
zeros of A1−(s), A2−(s), B1(s) and B2(s) are located in the left half plane,
while all zeros of A1+(s) and A2+(s) are located in the right half plane. The
primary controller transfer function can therefore be derived as

C(s) = K2

B1(s)B2(s)
K1K2A∗

1+(s)A∗
2+(s)A1−(s)A2−(s)(λcs + 1)nc

(9.51)

where A∗
1+(s) and A∗

2+(s) are the complex conjugate of A1+(s) and A2+(s)
respectively (i.e., A1+(s)/A∗

1+(s) and A2+(s)/A∗
2+(s) are all-pass filters), λc

is a tuning parameter and nc is the order of the filter to be selected in order to
make the controller transfer function proper. Indeed, λc allows the handling
of the trade-off between aggressiveness and robustness. A good starting point
is to select λc equal to the overall time delay of the process to be controlled.
The design of the load disturbance estimator F is performed by proposing the
desired complementary sensitivity function of the inner loop, denoted as T̄ (s).
In particular, by considering again the H2 optimal performance objective of
the IMC theory, the expression of T̄ (s) is selected as

T̄ (s) =
1

(λfs + 1)nf

A2+(s)
A∗

2+(s)
e−L2s (9.52)

where the filter order nf is chosen appropriately. Thus, the expression of F (s)
can be determined as

F (s) =
F1(s)

1 − F1(s)P2(s)
(9.53)

where

F1(s) =
B2(s)

K2A∗
2+(s)A2−(s)(λfs + 1)nf

. (9.54)

The design parameter λf allows again the handling of the trade-off between
aggressiveness and robustness and it is suggested to select it, as a first guess,
equal to the secondary process estimated dead time.
It is worth stressing at this point that the methodology fully exploits an ac-
curate (possibly high-order) modelling of the process, but the two controllers
are not of PID type in general and the overall scheme has to be implemented
in a different way with respect to the standard scheme of Figure 9.1.
The same process (9.18)–(9.19) has been adopted to illustrate the methodol-
ogy. Based again on the simultaneous identification method of Section 9.2.4,
the model of the primary and secondary processes are chosen respectively as

P1m(s) =
1

7.55s + 1
e−6.88s (9.55)

and

P2m(s) =
1

0.99s + 1
e−0.21s. (9.56)
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Fig. 9.11. Process variable obtained with the two degree-of-freedom control struc-
ture of Figure 9.9 (solid line) and of Figure 9.10 (solid line)

Consequently, the two filters time constants are selected as λc = 7.09 and
λf = 0.21. It results:

C(s) =
(0.99s + 1)(7.55s + 1)

(7.09s + 1)2
(9.57)

and

F1(s) =
0.99s + 1
0.21s + 1

. (9.58)

The process variables obtained by considering the two control schemes are
plotted in Figure 9.11 (note that a unit step load disturbance is applied again
to the process at time t = 250). The effectiveness of both schemes is apparent.

9.3 Ratio Control

9.3.1 Generalities

Ratio control, which consists in keeping a constant ratio between two (or
more) process variables, irrespective of possible set-point changes and load
disturbances that might occur on the plant, is of concern in a variety of in-
dustrial applications such as chemical dosing, water treatment, chlorination,
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mixing vessels and waste incinerators. For example, in combustion systems
it is necessary to control accurately the air-to-fuel ratio in order to obtain a
high efficiency, and in blending processes a selected ratio of different flows has
to be maintained to keep a constant product composition. In this latter case,
both flows can be controlled or, alternatively, one of them can be measured
only (the so-called wild flow) and the other is regulated in order to achieve
the desired ratio.
Formally, denote by a the desired ratio to be kept between the values of two
process variables y1 and y2. For this purpose, the control scheme shown in
Figure 9.12 (also termed series metered control) can be implemented. Each
variable is controlled by two separate controllers C1 and C2 (typically of PI
type) and the output y1 of the first process is multiplied by a and adopted as
the set-point signal of the closed-loop control system of the second process,
i.e., it is r2(t) = ay1(t).
The main disadvantage of this scheme is related to its transient response to
a change in the set-point r1, since the output y2 is necessarily delayed with
respect to y1, due to the closed-loop dynamics of the second loop. In general,
the second loop is chosen as the one with the fastest dynamics. However, in
order to keep the ratio close to the desired value, it might be necessary to
detune the first loop and therefore the performance obtained in the set-point
following task and in the rejection of the load disturbance d1 decreases.
A possible alternative scheme is the one shown in Figure 9.13 (termed paral-
lel metered control). In this case, provided that the two closed-loop systems
have the same dynamics, a high performance can be achieved in the set-point
following task, but, obviously, a disturbance acting on the first process can
cause a large error in the ratio value. For this reason, this approach has to be
employed in those applications where load disturbances are unlikely to occur.
Finally, it is worth remembering that in the particular case of combustion
control, where a selected air-to-fuel ratio has to be maintained, it is often es-
sential to prevent the occurrence of a fuel rich environment, since this might
lead to a furnace explosion. In this context, the so-called cross-limiting con-
trol (also known as lead-lag control) shown in Figure 9.14 can be adopted
(Gomes, 1985). The two loops are interlocked by using a low and a high se-
lectors that force the fuel to follow the air flow when the set-point increases
and that force the air to follow the fuel when the set-point decreases.
Techniques for the improvement of these standard techniques have been re-
cently proposed. They are presented in the following sections.

9.3.2 The Blend Station

Methodology

As already mentioned, the use of the series metered control scheme of Figure
9.12 has the disadvantage that the output y2 is actually delayed with respect
to y1 because of the closed-loop dynamics of the second loop. In order to
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Fig. 9.12. The typical ratio control scheme (series metered control)
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Fig. 9.13. An alternative ratio control scheme (parallel metered control)

address this problem, an alternative architecture, called the Blend Station
and shown in Figure 9.15, has been proposed in (Hägglund, 2001). Its use is
suggested when no disturbances are likely to occur in the processes and when
the two processes exhibit a different dynamics (thus, it has to be considered
a valid alternative to the parallel metered control scheme of Figure 9.13).
The main feature of the scheme is that the value of the set-point r2 depends
both on the value of the process output y1 and on the value of the set-point
r1, according to the expression

r2(t) = a(γr1(t) + (1 − γ)y1(t)). (9.59)
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Note that γ is a constant parameter that weights the relative influence of
the set-point r1 on r2 with respect to y1 (for γ = 0 the classical scheme of
Figure 9.12 is obtained). The value of γ can be selected as the ratio of the
time constants of the two closed-loop systems (or, if they are not available,
as the ratio of the integral time constants of the two controllers Ti2/Ti1) or,
alternatively, by applying a suitable adaptive procedure, i.e., by applying the
following formula (Hägglund, 2001):

dγ

dt
=

S

Ta
(ay1 − y2) (9.60)

where S ∈ {−1, 0, 1} is a sign parameter that takes into account if the set-
point step is positive or negative. In (Hägglund, 2001) it is suggested selecting
the value of the adaptation rate Ta as a factor times the longest integral time
of the two loops.



9.3 Ratio Control 271

A methodology where a time-varying parameter γ(t) is adopted has been
proposed in (Visioli, 2005a). Assume that a transition from the initial value
yi
1 to the final value yf

1 is required to be performed at time t = t0 for the
process variable y1 (i.e., a step set-point signal of amplitude yf

1 −yi
1 is applied

to the set-point signal r1(t) at time t = t0). Without loss of generality, in the
following it will be assumed that a positive step signal is applied, i.e., yf

1 > yi
1.

First, as usual, the second loop has to be selected as the one with the fastest
dynamics, i.e., the dynamics of process P2 is faster than the one of P1.
Processes P1 and P2 are then modelled with FOPDT transfer functions:

P1(s) =
K1

T1s + 1
e−L1s, (9.61)

P2(s) =
K2

T2s + 1
e−L2s. (9.62)

Based on these models, the two single-loop controllers C1 and C2 are selected
as PI controllers with set-point weighting, i.e., the manipulated variables u1

and u2 are expressed as:

u1(t) = Kp1

(
β1r1(t) − y1(t) +

1
Ti1

∫ t

0

(r1(τ) − y1(τ))dτ

)
, (9.63)

u2(t) = Kp2

(
β2r2(t) − y2(t) +

1
Ti2

∫ t

0

(r2(τ) − y2(τ))dτ

)
. (9.64)

The value of γ is chosen as the output of a PI controller as well, whose input is
the current ratio error, added to a constant value γ∗. An additional condition
has to be set to account for the case in which L1 > L2, in order to avoid that
at the beginning of the transient response the condition y2(t) > ay1(t) holds,
i.e., the output y2 starts its transient before that of y1. Formally, it is:

γ(t) =

{
0 if L1 > L2 and t < t0 + L1 − L2

γ∗ + Kp

(
er(t) + 1

Ti

∫ t

0 er(τ)dτ
)

elsewhere
(9.65)

where
er(t) = y2(t) − ay1(t). (9.66)

In this way, the two process outputs are forced to start their transient response
at the same time instant.
It appears that the adoption of a time-varying parameter γ aims actually at
“shaping” the reference function r2(t) in such a way that the response of the
second closed-loop system is as equal as possible to that of the first one, de-
spite their possible different dynamics.
A tuning procedure for the overall scheme has been also proposed in (Visioli,
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Table 9.1. Tuning rule of the proposed ratio controller

Kp1 Ti1 β1 Kp2 Ti2 β2 γ∗ Kp Ti

0.9T1

K1L1
3L1 0

0.9T2

K2L2
3L2 0

Ti2

Ti1
0.5

L2

T2

T1

L1

T1

L1

2005a). The two PI controllers C1 and C2 (see (9.63)–(9.64)) are tuned ac-
cording to the Ziegler–Nichols formula (Åström and Hägglund, 1995) and the
set-point weights β1 and β2 are set to zero in order to avoid significant over-
shoots. Finally, γ∗ is chosen as Ti2/Ti1 and the gains of the PI controller
that provides the current value of γ (see (9.65)) are selected according to the
following formula:

Kp = 0.5
L2

T2

T1

L1
, Ti =

T1

L1
. (9.67)

The overall tuning rule is summarised in Table 9.1.
It appears that, being based on a simple identification experiment and on
the direct application of simple formulae, the tuning procedure can be easily
performed automatically. It is worth noting again that, although the Ziegler–
Nichols rules are known to provide large overshoot, the use of the set-point
weight fixed to zero prevents this fact and extends the range of processes for
which they provide satisfactory results. Obviously, this implies also that the
rise time increases, but this can be accepted in a ratio control framework,
where keeping the desired ratio is of major concern, rather than obtaining a
high-performance step response. However, in case the dynamics of a process
is not suitable for the Ziegler–Nichols formulae, i.e., the dead time is greater
than the dominant time constant, then a more appropriate (though more
complex) tuning rule such as the Kappa–Tau (Åström and Hägglund, 1995)
should be used for the two PI controllers C1 and C2, while Formula (9.67) is
maintained.
Note also that the value of γ∗ is selected according to the considerations made
in (Hägglund, 2001), since γ∗ is actually the initial value of γ.
In any case, being based on a standard PI controller (9.65), the user can easily
modify the performance of the ratio controller by increasing or decreasing the
value of Kp and Ti according to its typical know-how, which is therefore
conveniently fully retained.

Simulation Results

In order to verify the effectiveness of the original Blend Station approach and
of its modification, some simulation results are presented. In all cases a unit
step is applied to the set-point signal r1(t) at time t0 = 0 s (i.e., yi

1 = 0 and
yf
1 = 1). Further, the value a = 1 has been fixed.

As a first example, the following two FOPDT processes have been considered:
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P1(s) =
1

6s + 1
e−2s P2(s) =

1
2s + 1

e−2s. (9.68)

By applying the tuning procedure, the values of Kp1 = 2.7, Ti1 = 6,
Kp2 = 0.9 and Ti2 = 6 result. The original Blend Station has then been
designed with γ = Ti2/Ti1 = 1 (note that the scheme of Figure 9.13 nat-
urally results) and the adaptive version has been implemented by setting
Ta = 10 ·max{Ti1, Ti2} = 60. In order to provide the best achievable result in
this context, a large number of set-point steps has been applied to the ratio
control architecture, until the value of γ converges around its optimal value.
Then, regarding the control scheme where the value of γ is determined by
means of Formula (9.65), the values of γ∗ = 1, Kp = 1.5, Ti = 3 are selected.
The process variables resulting for the different schemes considered are shown
in Figure 9.16 (the classic scheme of Figure 9.12 has been also considered).
The corresponding control variables are shown in Figure 9.17. Note that no
particular aspects emerge for the control signals and therefore they will be
not shown for the other examples for the sake of brevity.
The overall performance achieved with the different approaches can be com-
pared by calculating the following performance:

J =
∫ ∞

0

|ay1(t) − y2(t)|dt. (9.69)

The value J = 4.44 results for the original Blend Station, J = 0.35 for the
adaptive Blend Station, J = 2.07 for the modified Blend Station, J = 12.65
for the standard ratio controller.
It appears that the adaptive Blend Station provides the best performance, al-
though this occurs after many set-point changes are applied in order to allow
the convergence to the best value of γ.
In order to understand better the different approaches, the γ signals are plot-
ted in Figure 9.18 together with the reference signal obtained for the second
loop in the case where the modified Blend Station is adopted. It can be seen
that the variation of γ for the case of the adaptive Blend Station is hardly
visible (i.e., γ(t) is nearly constant during the transient response), and this
indicates that the best result that can be obtained with this scheme has been
achieved.
As a second example, the following two FOPDT processes have been consid-
ered:

P1(s) =
1

4s + 1
e−3s P2(s) =

1
8s + 1

e−2s. (9.70)

The tuning procedure results in Kp1 = 1.2, Ti1 = 9, Kp2 = 3.6 and Ti2 = 6.
Then, for the original Blend Station approach the value of γ = 0.67 is selected
and by applying the adaptive procedure (with Ta = 90) on a sequence of set-
point steps, the value of γ converges around 0.49. Finally, for the modified
approach, the value of γ∗ = 0.67, Kp = 0.17 and Ti = 1.33 are determined
(see Table 9.1).
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Fig. 9.16. Process variables obtained for the first example of the Blend Station
approach. Thick solid line: y1; dash-dot line: y2 with the original Blend Station;
dotted line: y2 with the adaptive Blend Station; dashed line: y2 with the modified
Blend Station; solid line: y2 with the classic approach (γ = 0).

0 10 20 30 40 50 60 70
0

0.5

1

1.5

time

co
nt

ro
l v

ar
ia

bl
e

Fig. 9.17. Control variables obtained for the first example of the Blend Station
approach. Thick solid line: u1; dash-dot line: u2 with the original Blend Station;
dotted line: u2 with the adaptive Blend Station; dashed line: u2 with the modified
Blend Station; solid line: u2 with the classic approach (γ = 0).
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Fig. 9.18. Different signals obtained for the first example of the Blend Station
approach. Solid line: r2(t) for the modified Blend Station; dashed line: γ(t) for the
modified Blend Station; dotted line: γ(t) for the adaptive Blend Station.

The resulting process variables are reported in Figure 9.19, where again the
standard approach has been also considered. The value of γ for the case of the
Blend Station with the adaptive procedure has been plotted together with γ(t)
and r2(t) for the modified method in Figure 9.20. The resulting values of the
performance index are J = 3.33 for the original Blend Station, J = 1.044 for
the adaptive Blend Station, J = 1.37 for the modified approach and J = 7.67
for the standard ratio controller. Indeed, the same considerations made for
the first example can be made also for this one.
As a third example the same processes of the previous example are considered,
but their position has been swapped in the overall control scheme, namely,

P1(s) =
1

8s + 1
e−2s P2(s) =

1
4s + 1

e−3s. (9.71)

In this case the values Kp1 = 3.6, Ti1 = 6, Kp2 = 1.2, Ti2 = 9, γ∗ = 1.5, Kp =
1.5 and Ti = 4 evidently result. Results obtained with the different control
architectures are reported in Figure 9.21. Note that in this case the adaptive
procedure (again with Ta = 90) for the Blend Station, applied when a series
of set-point steps occurs, converges around a value of γ = 2.12. This value has
been adopted as initial condition for the process output y2(t) obtained with
the adaptive Blend Station.
As for the previous examples, in Figure 9.22 the value of γ for the case of the
Blend Station with the adaptive procedure has been plotted together with
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Fig. 9.19. Process variables obtained for the second example of the Blend Station
approach. Thick solid line: y1; dash-dot line: y2 with the original Blend Station;
dotted line: y2 with the adaptive Blend Station; dashed line: y2 with the modified
Blend Station; solid line: y2 with the classic approach (γ = 0).
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Fig. 9.20. Different signals obtained for the second example of the Blend Station
approach. Solid line: r2(t) for the modified Blend Station; dashed line: γ(t) for the
modified Blend Station; dotted line: γ(t) for the adaptive Blend Station.
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γ(t) and r2(t) for the method where the current value of γ is determined by a
PI controller. The resulting values of the performance index are J = 5 for the
original Blend Station, J = 2.07 for the adaptive Blend Station, J = 2.37 for
the modified Blend Station, and J = 16.5 for the standard ratio controller.
By comparing the results obtained for this example with those obtained for
the previous one, it appears that, as already mentioned, it is more sensible to
choose as a first process that with the fastest dynamics but in any case the
performance obtained with the proposed ratio controllers are still satisfactory
(indeed the same conclusions of the previous examples can be drawn also for
this example).
Finally, as a last example, two high-order processes have been considered:

P1(s) =
1

(s + 1)8
P2(s) =

1
(0.25s + 1)8

. (9.72)

The two processes are modelled with FOPDT transfer functions with the
following parameters: K1 = 1, T1 = 2.99, L1 = 5.55, K2 = 1, T2 = 0.71,
L2 = 1.82.
Being the dead time of the two processes significantly greater than the corre-
sponding dominant time constant, the Kappa–Tau tuning rules (Åström and
Hägglund, 1995) have been adopted instead of the Ziegler–Nichols ones. Thus,
it results: Kp1 = 0.13, Ti1 = 2.62, b1 = 2.91, Kp2 = 0.11, Ti2 = 0.71, b2 = 3.67
γ∗ = 0.27, Kp = 0.69, Ti = 0.54.
Resulting process variables are shown in Figure 9.23, where the process out-
put y2(t) for the adaptive Blend Station has been obtained by starting with
a value of γ equal to 0.32, which results after the application of a sequence
of set-point steps with Ta = 26.2. In Figure 9.24 the value of γ for the case
of the Blend Station with the adaptive procedure has been plotted together
with γ(t) and r2(t) for the modified Blend Station method.
The resulting values of the performance index are J = 1.81 for the original
Blend Station, J = 1.70 for the adaptive Blend Station, J = 0.52 for the
modified Blend Station and J = 4.56 for the standard ratio controller.
It appears that in this case the scheme with an additional PI controller pro-
vides a performance even better than the adaptive Blend Station. This is
possibly explained by the fact that γ(t) = 0 when t < 3.73 (see (9.65)), thus
allowing the two process outputs to start their transient almost at the same
time so that a very satisfactory result is achieved.
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Fig. 9.21. Process variables obtained for the third example of the Blend Station
approach. Thick solid line: y1; dash-dot line: y2 with the original Blend Station;
dotted line: y2 with the adaptive Blend Station; dashed line: y2 with the modified
Blend Station; solid line: y2 with the classic approach (γ = 0).
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Fig. 9.22. Different signals obtained for the third example of the Blend Station
approach. Solid line: r2(t) for the modified Blend Station; dashed line: γ(t) for the
modified Blend Station; dotted line: γ(t) for the adaptive Blend Station.
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Fig. 9.23. Process variables obtained for the fourth example of the Blend Station
approach. Thick solid line: y1; dash-dot line: y2 with the original Blend Station;
dotted line: y2 with the adaptive Blend Station; dashed line: y2 with the modified
Blend Station; solid line: y2 with the classic approach (γ = 0).
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Fig. 9.24. Different signals obtained for the fourth example of the Blend Station
approach. Solid line: r2(t) for the modified Blend Station; dashed line: γ(t) for the
modified Blend Station; dotted line: γ(t) for the adaptive Blend Station.
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Experimental Results

Experimental results have been obtained by considering the level control ap-
paratus described in Section A.1, where both tanks have been adopted. In
particular, the task to be accomplished is to perform an output transition
from 2 V to 3 V for the first tank as well as for the second one, maintaining
a desired ratio value a = 1 during the whole transient response.
In order to diversify the dynamics of the two level control loops, as a first ex-
periment, a software time delay of 10 s and 5 s has been added to the measure
of the level of the first and of the second tank respectively. A FOPDT model of
each process has been estimated separately by applying the area method (see
Section 7.2.1) to the open-loop step response. The transfer functions obtained
are

P1(s) =
1.98

25s + 1
e−11s P2(s) =

2.27
25s + 1

e−6s. (9.73)

The application of the formulae of Table 9.1 results in Kp1 = 1.03, Ti1 = 33,
Kp2 = 1.65, Ti2 = 18, γ∗ = 0.55, Kp = 0.27, Ti = 2.27.
Results are shown in Figure 9.25. The resulting performance index (9.69)
(calculated over the time interval from t = 0 s to t = 195 s) is J = 7.41 for
the Blend Station, J = 5.32 for the modified Blend Station and J = 23.59 for
the standard ratio controller.
A second experiment has been performed by modifying the added dead time of
the second process, decreasing it to 4 s. In this case the control parameters are
Kp1 = 1.03, Ti1 = 33, Kp2 = 1.98, Ti2 = 15, γ∗ = 0.45, Kp = 0.23, Ti = 2.27.
Results are shown in Figure 9.26 and the calculated performance indexes are
J = 22.60 for the Blend Station, J = 12.18 for the modified Blend Station
and J = 20.35 for the standard ratio controller. By comparing the results
obtained, it appears that making the second loop dynamics faster implies a
better performance obtained by the standard controller, as expected.

9.3.3 Dynamic Blend Station

Methodology

In the previous sections it has been stressed that the Blend Station and its
modified version have not to be employed when load disturbances are likely
to occur in the plant, since they are not able to provide a satisfactory perfor-
mance in this case. In order to address also the load disturbance rejection task,
a different ratio control architecture has been proposed in (Visioli, 2005d),
which extends the idea of the original Blend Station by substituting the con-
stant parameter γ in Expression (9.59) by a dynamic system F . The control
scheme is shown in Figure 9.27. The transfer function F (s) is determined in
such a way that the transfer function from r1 to y1 is the same as the transfer
function from r1 to y2, scaled by a. By analysing the control scheme shown
in Figure 9.27 it can be deduced that:
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Fig. 9.25. Process variables obtained with the double tank apparatus
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Fig. 9.26. Process variables obtained with the double tank apparatus and modified
dead time
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y2 =
C2P2

1 + C2P2

F + C1P1

1 + C1P1
ar1 (9.74)

and

y1 =
C1P1

1 + C1P1
r1 (9.75)

After trivial calculations, it results that the two loops have identical dynamic
response if:

F (s) =
C1(s)P1(s)
C2(s)P2(s)

. (9.76)

If the two processes are assumed to have FOPDT dynamics and the two
controllers are of PI type, it turns out that, in order for the system F (s) to
be causal, it must be L1 ≥ L2. This relation gives a guideline on how to select
the first loop, that is, the first loop has to be selected as the one with the
process with the larger dead time.
For the purpose of tuning the overall control system, it is worth determining
the zeros, the poles and the gain of the transfer function F (s). They are
reported in Table 9.2. Because the control architecture guarantees that the
desired ratio is obtained along the whole transient response when a set-point
change is required (provided that the two processes have actually a FOPDT
dynamics), the selection of the parameters of the two controllers has to be
done according to the following intuitive guidelines:

• the parameters of C2(s) have to be chosen in order to provide the best
rejection of a load disturbance d2;

r1 C 1

u1 y
1P1

d 1

P2

r2 C2

u2

d2

y
2

a

F F

Fig. 9.27. The dynamic Blend Station control scheme
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Table 9.2. Zeros, poles, and gain of transfer function F (s)

zeros − 1

Ti1
, − 1

T2

poles − 1

Ti2
, − 1

T1

gain
K1Kp1Ti2

K2Kp2Ti1

• the parameters of C1(s) have to be chosen in order to provide the best
rejection of a load disturbance d1;

• the parameters of C1(s) and C2(s) have to be chosen in order to have a
frequency response of F (s) as low as possible. In this way, the reference
r2 of the second loop is determined mainly by output y1 of the first loop
instead of the reference r1 of the first loop (note that the transfer function
from y1 and r2 is a(1 − F (s))). Thus, a high performance on the desired
ratio is obtained when a load disturbance is acting on the first process.

In order to achieve the mentioned goals, the following procedure is suggested.
First, the PI controller C1 is tuned according to the analytical method pro-
posed in (Chen and Seborg, 2002), whose purpose is to obtain a desired speci-
fication on the load disturbance rejection task. In this context, it is convenient
to choose the value of the time constant of the desired transfer function be-
tween the load disturbance d1 and the process output y1 equal to the value of
the time constant T1 of the process. This results in the following tuning rule:

Kp1 =
1

K1

T1

T1 + L1
Ti1 = T1. (9.77)

In this way, in addition to a good degree of robustness, a low value of the ratio
Kp1/Ti1 is achieved, which is important in order to ensure a low frequency
response of F (s) (see Table 9.2).
Subsequently, the PI controller C2 is tuned by first imposing again a pole-zero
cancellation in the second loop, i.e., by setting Ti2 = T2. In other words, with
the previous choices, we have simply

F (s) = Ke−(L1−L2)s (9.78)

where

K =
K1Kp1Ti2

K2Kp2Ti1
. (9.79)

Then, parameter Kp2 is selected by following basically the same idea described
in (Åström et al., 1998). Thus, in order to have good load disturbance rejec-
tion performance, Kp2 is fixed, after solving an optimization problem, as the
maximum value that guarantees that the closed-loop system is stable and that
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the largest value Ms of the sensitivity function is constrained.
It should be noted that Ms can be considered as a useful tuning parameter
because it allows the handling of the trade-off between performance and ro-
bustness. In this context, typical values of Ms are chosen in the range 1.2-2.0,
in order to ensure a sufficient damping of the closed-loop system. However,
since in this case the set-point response is not of concern, because it is equal
to the one of the first loop (because of the ratio control architecture), it might
be convenient to choose a higher value of Ms, for example Ms = 2.5, in order
to obtain a higher value of Kp2 and therefore a lower value of the gain of F (s).
Actually, choosing a value of Ms = 2.5 is still sensible, as a higher value is
generally obtain by applying the well-known Ziegler–Nichols tuning formula
(Åström and Hägglund, 1995).
It has to be stressed that, in any case, by exploiting Expression (9.76), the
proposed control architecture can be adopted with different tuning strategies
for the two controllers C1 and C2, achieving in any case the desired ratio in
the presence of a set-point change. Thus, the user might apply its know-how in
tuning the two controllers, without impairing the effectiveness of the method-
ology.
For example, detuning the controller of the first loop implies that when a load
disturbance occurs on the first process, a slower rejection is obtained, but
the desired ratio is kept better during the transient. In addition, if a process
is lag-dominant, the use of a pole-zero cancellation in the feedback control
design provides a slow load disturbance response. In this case an alternative
tuning rule can be conveniently employed, for example the one proposed in
(Skogestad, 2003). Besides, an available more accurate model of the processes
can be fully exploited by adopting Expression (9.76).

Simulation Results

As a first example to illustrate the use of the Dynamic Blend Station approach,
the following two FOPDT processes are considered (a = 1):

P1(s) =
1

4s + 1
e−3s P2(s) =

1
6s + 1

e−2s. (9.80)

By applying the proposed method and the proposed tuning procedure (with
Ms = 2.5), the following parameters of the controllers are determined: Kp1 =
0.57, Ti1 = 4, Kp2 = 2.58, Ti2 = 6. Consequently, we obtain

F (s) = 0.33e−s.

A unit step has been applied to the set-point signal at time t = 0 and then to
the load disturbance signals d1 and d2 at time t = 30 and t = 70 respectively.
The two process outputs are shown in Figure 9.28, while the two manipulated
variables are plotted in Figure 9.29. It appears that a perfect ratio control is
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Fig. 9.28. Process variables obtained for the first example of the Dynamic Blend
Station approach. Solid line: y1(t); dashed line: y2(t).
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Fig. 9.29. Control variables obtained for the first example of the Dynamic Blend
Station approach. Solid line: u1(t); dashed line: u2(t).
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Fig. 9.30. Reference signal r2(t) obtained for the first example Solid line: dynamic
Blend Station; dashed line: standard ratio control.

achieved in the presence of a set-point change, as expected, but the perfor-
mance is very satisfactory even in the presence of load disturbances. For the
sake of comparison, results obtained by the classic ratio control scheme (see
Figure 9.13) are shown in Figures 9.31 and 9.32 (note that the PI controllers
have been tuned as for the new method).
It appears that the worst performance obtained for the set-point change is not
counterbalanced by a better performance in the presence of load disturbances.
The value of the performance index J calculated over the whole experiment is
4.80 for the dynamic Blend Station (actually, it is J = 0 for just the set-point
step response and J = 2.46 for the load disturbance d1 transient response)
and 8.55 for the classic one (with J = 2.44 for just the set-point step response
and J = 3.77 for the load disturbance d1 response).
Indeed, the dynamic Blend Station scheme provides in this case a better load
disturbance rejection than the classic one. This is explained by the fact that a
somewhat aggressive tuning has been selected for the second loop and, when
a load disturbance occurs in the first loop, the dynamic Blend Station scheme
provides for the second loop a lower reference signal r2 than the classic scheme
(see Figure 9.30, where obviously r2 is equal to y1 for the classic scheme). This
is also the reason for the lower control effort that is required by the dynamic
Blend Station scheme.
It has to be stressed that it cannot be claimed that the dynamic Blend Station
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technique provides in general a performance better than the classic one when
a load disturbance occurs in the first loop. Indeed, with a proper tuning (i.e.,
by detuning the second loop at the expense of performance in the set-point
following task and in the rejection of a load disturbance affecting process P2)
the typical scheme could provide a smaller value of J .
However, it can be noted that the proposed tuning method provides practi-
cally the best performance with the control scheme of Figure 9.27. If the gain
K is selected in order to minimise J when a step load disturbance occurs on
the process P1, the values K = 0.30 and J = 2.44 are obtained, which are
very close to the value obtained with Formula (9.79).
As a second example, two systems that are not of first order are considered:

P1(s) =
1

(s + 1)4
P2(s) =

1
(s + 1)2

e−s. (9.81)

An estimate of a FOPDT transfer function has been obtained by means of
the area method (see Section 7.2.1). The values K1 = 1, T1 = 1.84, L1 = 1.92,
K2 = 1, T2 = 1.39 and L2 = 1.57 result. It appears that these processes are
quite difficult to control as they have a large normalised dead time (i.e., the
ratio between the dead time and the time constant of the process).
The tuning procedure described previously (again with Ms = 2.5) has been
applied by considering the estimated process models, resulting in Kp1 = 0.51,
Ti1 = 1.84, Kp2 = 0.77, Ti2 = 1.39, and

F (s) = 0.48e−0.35s.

A unit step has been applied to the set-point signal at time t = 0 s and then
to the load disturbance signals d1 and d2 at time t = 30 s and t = 70 s re-
spectively. The two process outputs and the two control variables are shown
in Figures 9.33 and 9.34 respectively for the dynamic Blend Station and in
Figures 9.35 and 9.36 for the standard approach.
It turns out that, despite the fact that the two processes are not FOPDT, and
therefore a perfect ratio control cannot be achieved, the performance achieved
with the dynamic Blend Station scheme is still very satisfactory.
Basically, the same considerations made for the previous example applies also
in this case. Indeed, with respect to the whole experiment, the performance
index (9.69) results to be J = 5.77 for the dynamic Blend Station scheme
(where the set-point step response contributes for 0.51 and the load distur-
bance d1 response for 2.33), while for the classic one it is J = 9.31 (where
the set-point step response contributes for 2.86 and the load disturbance d1

response for 3.52).
Note that the value of K that minimises J in the presence of a step load
disturbance d1 only is K = 0.53, which results in J = 2.32.
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Fig. 9.31. Process variables obtained for the first example with the standard ratio
control approach. Solid line: y1(t); dashed line: y2(t).
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Fig. 9.32. Control variables obtained for the first example with the standard ratio
control. Solid line: u1(t); dashed line: u2(t).
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Fig. 9.33. Process variables obtained for the second example of the Dynamic Blend
Station approach. Solid line: y1(t); dashed line: y2(t).
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Fig. 9.34. Control variables obtained for the second example of the Dynamic Blend
Station approach. Solid line: u1(t); dashed line: u2(t).
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Fig. 9.35. Process variables obtained for the second example with the standard
ratio control approach. Solid line: y1(t); dashed line: y2(t).
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Fig. 9.36. Control variables obtained for the second example with the standard
ratio control. Solid line: u1(t); dashed line: u2(t).
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Experimental Results

As in the previous section, experimental results have been obtained by con-
sidering the level control apparatus described in Section A.1. A time delay of
10 s and 5 s has been added via software at the input of the first and second
process respectively, but the two tanks have been swapped with respect to the
previous case. Hence, the two FOPDT models adopted are

P1(s) =
2.27

25s + 1
e−11s P2(s) =

1.98
25s + 1

e−6s. (9.82)

The task to be accomplished is to perform an output transition from 2 V to
2.5 V for the first tank as well as for the second one, maintaining a desired
ratio value a = 1 during the whole transient response. According to the tuning
procedure described above, the PI controller of the first process has been
tuned with Kp1 = 0.31 and Ti1 = 25, while that of the second process with
Kp2 = 1.82 and Ti2 = 25. Results are shown in Figures 9.37–9.39 for the
dynamic Blend Station scheme and in Figures 9.40–9.42 for the classic one
(see Figure 9.13). The resulting value of the performance index (obviously the
result in both cases is biased due to the noise) is J = 26.7 for the dynamic
Blend Station (note that J = 7.4 for the set-point step response and J = 9.5
for the load disturbance d1 response) and J = 32.7 for the classic method
(in this case J = 13.2 the set-point step response and J = 9.9 for the load
disturbance d1 response). Thus, experimental results confirm the effectiveness
of the dynamic Blend Station approach.

9.4 Conclusions

Cascade control and ratio control schemes based on PID controllers have been
addressed in this chapter. It has been shown that the adoption of recent design
methodologies and modifications of the classic control architectures can lead
to a faster commissioning of the overall control system and to a significant
improvement in the control performance, although the general know-how and
the simplicity of use of the basic PID control algorithm is retained.
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Fig. 9.37. Process variables obtained with the double tank apparatus and the
dynamic Blend Station. Solid line: y1(t); dotted line: y2(t).
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Fig. 9.38. Control variables obtained with the double tank apparatus and the
dynamic Blend Station. Solid line: u1(t); dotted line: u2(t).
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Fig. 9.39. Reference signal r2(t) obtained with the double tank apparatus and the
dynamic Blend Station
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Fig. 9.40. Process variables obtained with the double tank apparatus and the
standard ratio controller. Solid line: y1(t); dotted line: y2(t).
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Fig. 9.41. Control variables obtained with the double tank apparatus and the
standard ratio controller. Solid line: u1(t); dotted line: u2(t).
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Fig. 9.42. Reference signal r2(t) obtained with the double tank apparatus and the
standard ratio controller



A

Experimental Setups

The laboratory equipment that has been employed to obtain the experimental
results shown in the book is described in this appendix. In particular, a double
tank apparatus and a oven have been used to implement level control and a
temperature control tasks, respectively.

A.1 Level Control Apparatus

The double tank apparatus (made by KentRidge Instruments) adopted for
level control experiments is shown in Figure A.1. Although the setup consists
of two small perspex tower-type tanks (whose area is A = 40 cm2), only one
at a time has been adopted in the experiments. Each tank is filled with water
by means of a pump whose speed is set by a DC voltage (the manipulated
variable), in the range 0-5 V, through a Pulse Width Modulation (PWM)
circuit. The tank is fitted with an outlet at the base in order for the water to
return to a reservoir. The measure of the level h of the water is given by a
capacitive-type probe that provides an output signal between 0 (empty tank)
and 5 V (full tank). For the sake of simplicity, the level variable is expressed
in Volts.
The process can be modelled by the following differential equation:

A
dh

dt
= Qi − Qo (A.1)

where Qi and Qo are the input (manipulated variable) and output flow rate
respectively. Note that the system is actually nonlinear, since the output flow
rate depends on the square root of the level, i.e.,

Qo = a
√

2gh

where a is the cross sectional area of the outflow orifice and g is the gravita-
tional constant. The employed control systems are implemented by means of
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a PC-based controller whose sampling time is 5 ms.
It is worth noting that the two tanks (both of them have been employed in the
experiments shown in the book) have a different dynamics. Further, different
models arise depending on the adopted identification experiment (see Chapter
7).

Fig. A.1. The double tank apparatus employed for level control experiments

A.2 Temperature Control Apparatus

A laboratory scale oven has been employed to implement temperature control
tasks. It consists of an aluminium plate that is heated by two resistors attached
to it. The plate is inserted in an insulating box (whose dimensions are 33 ×
21 × 16.5 cm). A fan (which has not been adopted in the experiments) is
present in order to provide a fast cooling of the apparatus. The temperature
of the plate is measured by means of a thermocouple. The overall process is
sketched in Figure A.2. The same PC-based controller (with a sampling time
of 5 ms) of the level control experiments has been employed.
The temperature process can be modelled by the following equations:

Cpτ̇p = P − Gpb(τp − τb)
Cbτ̇b = Gpb(τp − τb) + Gbe(τe − τb)

(A.2)
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where τp is the temperature of the plate, τb is the temperature of the box,
τe is the temperature of the external environment, Cp and Cc are the heat
capacities of the plate and of the box respectively, and Gpb and Gbe are the
thermal conductances between the plate and the box and between the box
and the external environment, respectively. Finally, P is the thermal power
provided by the heating elements.
The control task consists of controlling the temperature of the plate by acting
on the thermal power of the heating elements, namely, by manipulating the
voltage across the resistors. As for the level control task, for the sake of sim-
plicity the input and output are expressed in Volts (both in the range 0-5 V).
It has to be stressed that there is not active cooling and therefore the process
is asymmetric (the dynamics is different depending on the fact that the plate
has to be heated or cooled). Because of this significant nonlinearity, the appa-
ratus has not been adopted for those methods that relies on a linear dynamics
of the process.

Fig. A.2. The oven employed for level control experiments
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Åström, K. J. and T. Hägglund (2000b). The future of PID control. In: Preprints

IFAC Workshop on Digital Control PID‘00. Terrassa, E. pp. 19–30.
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Index

actuator saturation, 35, 94, 96
anti-windup, 35
anticipatory control, 6
area index, 227, 240
area method, 99, 103, 107, 116, 124,

166, 184, 257, 280
autocorrelation function, 214, 227
automatic reset, 5, 10, 42, 44, 50
automatic tuning, 18, 145
average residence time, 142

back-calculation, 38, 41, 44, 50
beta-gamma controller, 13
bias term, 5
blend station, 268
bumpless transfer, 39, 152

cascade control, 15, 251
command signal generator, 109
conditional integration, 38, 41, 44, 50
conditioning technique, 39
control effort, 20, 97, 99, 116, 131
control variable, 2
controller zeros, 20
cross limited control, 268

dead zone, 3
dead-time compensator, 16
decay ratio, 227
derivative action, 6, 8, 15, 16, 19
derivative filter, 9, 19, 148
derivative gain, 6
derivative kick, 10
derivative term, 14

derivative time constant, 7, 16
digital implementation, 13

feedback control, 2
feedforward control, 12, 61, 93, 140

linear causal, 93
linear noncausal, 109, 130
nonlinear causal, 96

feedforward filter, 2, 62, 97
FOPDT systems, 37, 96, 110, 149, 165,

233, 240
fuzzy control, 72, 90

gain scheduling, 90
genetic algorithms, 74, 173

half rule, 195
Harris index, 213
hysteresis, 3, 176, 177

ideal form, 7, 9, 13, 19, 22, 28
identification, 18, 145, 149, 165, 257
idle index, 231, 240
incremental algorithm, 14, 37
integral action, 5, 15, 35
integral gain, 5
integral term, 13, 45
integral time constant, 7, 16
integrator clamping, see conditional

integration
integrator windup, 5, 35, 253
interacting form, 7
Internal Model Control, 33, 194, 234,

257, 266
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inversion, 109, 111, 132
IPDT systems, 110, 149
ISA form, 13

Laguerre functions, 171
lead-lag controller, 141
least-squares, 150, 151, 170, 189, 257
level control, 50, 82, 103, 126, 136, 157,

247, 280, 291
load disturbance, 2, 5, 10
load disturbance detection, 223, 226
load disturbance rejection, 11, 16, 20,

25, 28, 33, 37, 61, 98, 140, 146,
207, 240, 251, 265

Maclaurin series expansion, 198, 257
manipulated variable, 2
master controller, 251
measurement noise, 2, 9, 19, 29, 42, 132,

192
minimum variance control, 210
model reduction, 170, 193

noise band, 42, 152, 230
non-interacting form, 7

on–off control, 3
optimisation, 149, 172, 191, 199, 232,

236, 240, 263
oscillation detection, 223, 227
oscillation diagnosis, 225
output index, 242
output transition time, 96, 100, 111,

115, 124, 132

Padè approximation, 110, 112, 195
parallel form, 8, 9
parallel metered control, 268
parameters estimation, see identification
performance assessment, 209

deterministic, 222
stochastic, 210

plug&control, 145
pole placement, 22
pole-zero cancellation, 33, 146
positional algorithm, 14
postactuation, 114
pre-act, 6
preactuation, 114
preloading, 38, 42, 44, 50

primary controller, 251
process monitoring, 209
proportional action, 3, 11, 15, 29
proportional band, 5
proportional gain, 3, 7, 16
proportional kick, 12

rate action, 6
ratio control, 267
realisable reference, 46
relay feedback, 65, 173
relay-feedback, 191, 235, 253, 263
reset term, 5

secondary controller, 251
self-tuning, 18
series form, 7, 9, 22, 29
series metered control, 268
set-point filter, see feedforward filter
set-point following, 11, 16, 25, 36, 93,

207, 219, 234, 265
set-point weight, 11, 61
slave controller, 251
Smith predictor, 16, 215, 263
SOPDT systems, 180, 233
standard form, 264
steady-state error, 4, 5, 15, 38
stiction, 225

tangent method, 166, 184
temperature control, 55, 85, 107, 145,

160
three-state controller, 3, 149
tracking mode, 40
tracking time constant, 39
transition polynomial, 111, 131
tuning, 16, 33, 46, 61, 149, 234, 253, 282
tuning rules

Kappa–Tau, 28, 277
refined Ziegler–Nichols, 66
Ziegler–Nichols, 17, 20, 27, 272

two-degree-of-freedom control, 11, 61,
265

ultimate gain, 65, 173
ultimate period, 65, 170, 173, 191, 254
underdamped systems, 180

velocity algorithm, see incremental
algorithm
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